现在,有了hash code,来考虑如何计算放入数组的位置。hash code值通常会很大,但是数组的大小有限,默认只有16,大的也不能超过2的30次方。所以,用模运算来保证在数组大小范围内是合理的,比如:index = hash code% array size.不过这有点慢,JDK采用了更快的算法。这个更快的算法源于一个数学规律,就是如果size是2的N次方,那么数X对size的模运算结果等价于X和size-1的按位与运算,也就是 X % size <=> X & (size -1).按位与只消耗一个CPU周期,当然快多了。现在就可理解为什么要故意把数组大小弄成2的N次方了。再回头看一开始计算数组大小的代码,完全理解了。
[java] view plaincopyprint?
1. int capacity = 1;
2. while (capacity < initialCapacity)
3. capacity <<= 1;
比如size=16,二进制表示如下:(32位)
0000000000000000000000000010000
size-1=15,表示如下:
0000000000000000000000000001111
假如hash code=4
0000000000000000000000000000100
4 & 15 结果为:
0000000000000000000000000000100
假如hash code=6
0000000000000000000000000000101
6 & 15 结果为:
0000000000000000000000000000101
假如hash code=38
0000000000000000000000000100110
38 & 15 结果为:
0000000000000000000000000000110
通过观察这三个例子,又可以发现一个特点,也就是X & size-1 的结果受到了size的阶数的限制,这里size=16,阶数为4.结果就是只用低4位的1和X按位与,而X的高位没有用到。这会导致重复率相当高。如果用一个算法将X的低位重新计算,比如根据所有位的值进行重新计算,就可以使得hash值分布更均匀。下面的代码揭示了在真正按位与之前,调用了hash函数,进行了一堆位运算。至于为什么用这个算法,我也不知道其来历。
[java] view plaincopyprint?
1. public V put(K key, V value) {
2. if (key == null)
3. return putForNullKey(value);
4. int hash = hash(key.hashCode());
5. int i = indexFor(hash, table.length);
6. for (Entry<K,V> e = table[i]; e != null; e = e.next) {
7. Object k;
8. if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
9. V oldValue = e.value;
10. e.value = value;
11. e.recordAccess(this);
12. return oldValue;
13. }
14. }
15.
16. modCount++;
17. addEntry(hash, key, value, i);
18. return null;
19. }
20.
21. static int hash(int h) {
22. // This function ensures that hashCodes that differ only by
23. // constant multiples at each bit position have a bounded
24. // number of collisions (approximately 8 at default load factor).
25. h ^= (h >>> 20) ^ (h >>> 12);
26. return h ^ (h >>> 7) ^ (h >>> 4);
27. }
28.
29. static int indexFor(int h, int length) {
30. return h & (length-1);
31. }
32.
33. void addEntry(int hash, K key, V value, int bucketIndex) {
34. Entry<K,V> e = table[bucketIndex];
35. table[bucketIndex] = new Entry<K,V>(hash, key, value, e);
36. if (size++ >= threshold)
37. resize(2 * table.length);
38. }
上面的for循环是查找并替换符合条件的对象,如果找不到,则添加新的对象。查找到的条件(必须都满足)是:
1.hash值相等
2.key的引用相同或者key的值相等。