【论文阅读】Multi-layer pseudo-supervision for histopathology tissue semantic segmentation using patch-le

基于Patch级别分类标签的多层伪监督病理组织的语义分割

ABSTRACT

  • 使用patch级别的分类标签来实现对组织病理图像的组织语义分割,最终减少了标注的工作量。

  • 提出了一个包括分类和分割两个阶段的两步模型。在分类阶段,我们提出了一种基于CAM的模型,通过patch级别的标签来生成伪掩模。在分割阶段,我们提出了多层伪监督算法Multi-Layer Pseudo-Supervision实现了组织语义的分割。

  • 介绍了一种新的肺腺癌弱监督语义分割(WSSS)数据集(LUAD-HistoSeg)。

  • 我们提出的模型比五种最先进的WSSS方法性能更好。基于完全监督的模型,我们可以获得类似的定量和定性结果,MIUU和FwIoU的差距只有2%左右。与人工标注相比,我们的模型可以大大节省标注时间从小时到分钟不等。

1 INTRODUCTION

肿瘤微环境(TME)不仅在肿瘤的发生发展中起着至关重要的作用,而且还影响着癌症患者的治疗效果和预后。TME由不同类型的组织组成,包括肿瘤上皮、肿瘤浸润淋巴细胞(TIL)、肿瘤相关间质等,已有研究证明它们与肿瘤进展密切相关。TIL被认为是许多实体肿瘤的预后生物标志物,如肺癌、乳腺癌和结直肠癌。而肿瘤上皮和肿瘤相关间质之间的串扰与肿瘤进展相关。因此,对不同类型的组织进行区分和分割,对TME的精确定量是至关重要的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值