论文介绍
题目:
CLEEGN: A Convolutional Neural Network for Plug-and-Play Automatic EEG Reconstruction
论文地址:
https://arxiv.org/pdf/2210.05988v2.pdf
创新点
- 自动化EEG重建模型:提出了CLEEGN,一个轻量级卷积神经网络,能够完全自动化地进行EEG重建,从而去除伪影,提升信号质量。
- 无需校准的即插即用设计: CLEEGN是一个基于预训练模型的设计,能够实现跨被试的通用性,免去了针对每个用户的个性化校准,适用于实时信号处理和在线场景。
- 高效的去伪影性能:该模型在EEG解码准确率上优于传统的伪影去除方法,且不依赖手工标记或复杂的人工调整,展示了在去除伪影的同时保留脑活动信息的能力。
方法
整体结构
CLEEGN模型是一个基于编码器-解码器的轻量级卷积神经网络,通过多层卷积结构来自动去除EEG信号中的伪影。编码器部分提取信号的空间和时间特征,而解码器则将这些特征重建为无伪影的EEG信号。在每层卷积层之后使用零填充和批归一化,以确保信号在去伪影过程中保持一致性并提升训练效率,实现了无需个性化校准的即插即用EEG重建。
- 编码器:编码器部分包含多个卷积块,主要用于提取EEG信号中的空间和时间特征。最初的卷积层提取空间特征,每个空间滤波器与EEG通道数量一致。接下来的层交换信号的维度,以便捕获时序信息,使用带有较大时间窗口的卷积层来提取时间特征。这种层设计考虑到了EEG信号的空间和时间结构。
- 解码器:解码器部分与编码器对称,由多个卷积块组成,用于将编码后的特征重建回无伪影的EEG信号。解码器的第一个卷积层使用时间滤波器来解码时间特征,随后通过空间滤波器还原空间信息,最终将信号还原到时间域。
- 零填充和批归一化:为了保持输入和输出的一致性,每层卷积层除了第一层之外都使用了零填充。同时在每个卷积层之后使用批归一化,以增强梯度的稳定性,优化网络的训练效率。
即插即用模块作用
cleegn 作为一个即插即用模块,主要适用于::
- 无需校准的自动化去伪影:能够在无需个体化校准的情况下,对新的EEG数据进行伪影去除,使系统更具通用性和便捷性。
- 提高EEG解码准确性:通过高效去除伪影,保留关键的脑活动信息,从而提升EEG信号的解码准确性,助力相关应用的精确度和稳定性。
- 便于实时应用:由于其轻量化设计,CLEEGN在复杂场景中也能保持计算效率,适合实时EEG处理需求。
消融实验结果
- 评估了不同神经网络去伪影方法的整体性能,包括 CLEEGN 模型与其他基准模型的均方误差 (MSE)、参数数量、和 AUC 指标。结果表明 CLEEGN 模型在 MSE 值上最低,在 AUC 分数上最高,说明它在去伪影的同时能够更好地保留脑活动信息,优于其他对比模型。
即插即用模块代码
import torch
import torch.nn as nn
#论文:CLEEGN: A Convolutional Neural Network for Plug-and-Play Automatic EEG Reconstruction
#论文地址:https://arxiv.org/pdf/2210.05988v2.pdf
class Permute2d(nn.Module):
def __init__(self