素数:一个数只能被1和它本身整除,1不算是素数。
判断从1到n有多少个素数,很简单,大家都会写:
int countPrimes(int n) {
int count = 0;
for (int i = 2; i < n; i++)
if (isPrim(i)) count++;
return count;
}
// 判断整数 n 是否是素数
boolean isPrime(int n) {
for (int i = 2; i <= n/i; i++)
if (n % i == 0)
// 有其他整除因子
return false;
return true;
}
但是如何高效的求出1~n之间有多少个素数呢?
我们知道2是素数,但是2 × 2 = 4, 3 × 2 = 6, 4 × 2 = 8…就都不是素数了,所以我们在找出一个素数之后,那么它所有的倍数就都不是素数了。
int countPrimes(int n) {
boolean[] isPrim = new boolean[n];
// 将数组都初始化为 true
Arrays.fill(isPrim, true);
int count = 0;
for (int i = 2; i < n; i++){
if (isPrim[i]) {
count++;
// i 的倍数不可能是素数了
for (int j = 2 * i; j < n; j += i) {
isPrim[j] = false;
}
}
}
return count;
}
当然,上面的代码还是可以再优化的,这也是我看的别的大佬的。
跟我们一般判断素数的方法一样外层循环不用判断到n,判断到sqr(n)就可以了,内层循环也不用从2倍开始,直接从平方开始,比如 i = 4 时算法会标记 4 × 2 = 8等数字,但是这个数字已经被 i = 2 标记了。
int countPrimes(int n) {
boolean[] isPrim = new boolean[n];
Arrays.fill(isPrim, true);
for (int i = 2; i <= n/i; i++) {
if (isPrim[i]){
for (int j = i * i; j < n; j += i) {
isPrim[j] = false;
}
}
}
int count = 0;
for (int i = 2; i < n; i++){
if (isPrim[i])
count++;
}
return count;
}