5.4习题

5.4

代码:

import numpy as np  
from scipy.optimize import minimize   
def objective(x):  
    return -np.sum(np.sqrt(x))  
constraints = [  
    {'type': 'ineq', 'fun': lambda x: 10 - x[0]},    
    {'type': 'ineq', 'fun': lambda x: 20 - (x[0] + 2*x[1])}, 
    {'type': 'ineq', 'fun': lambda x: 30 - (x[0] + 2*x[1] + 3*x[2])},  
    {'type': 'ineq', 'fun': lambda x: 1000 - np.sum((np.arange(1, 101)[:, None] * x).T)},  
    *[{'type': 'ineq', 'fun': lambda x, i=k: 1000 - (101-i) * np.sum(x[:i+1])} for k in range(100)]  
]  
bounds = [(0, None)] * 100    
x0 = np.zeros(100)   
result = minimize(objective, x0, bounds=bounds, constraints=constraints)  
if result.success:  
    print("Optimal solution found:")  
    print("x =", result.x)  
    print("Maximum z =", -result.fun)  
else:  
    print("Optimization failed.")

结果:

Optimal solution found:
x = [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0.]
Maximum z = 0.0

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值