代码随想录算法训练营第四十一天【动态规划part03】 | 343. 整数拆分、96.不同的二叉搜索树

343. 整数拆分

题目链接:

力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台

求解思路:

动规五部曲

  1. 确定dp数组及其下标含义:dp[i] 拆分i,可以得到的最大乘积为dp[i]
  2. 确定递推公式:从1开始遍历j,有两种渠道得到dp[i],一种是 j * (i - j),另一种是 j * dp[i - j],相当于拆分 (i - j);注意dp[i] 本身也要作为取最大值中的一个
  3. dp的初始化:dp[0] 和 dp[1] 都是没有意义的,只需要初始化 dp[2] = 1
  4. 确定遍历顺序:递归公式为 dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j)),dp[i] 依靠 dp[i-j],所以从前向后遍历;注意枚举 j 是从1开始的,并且如果拆分一个数使乘积最大,那么一定是拆分成m个近似相同的子数,因此 j 遍历到 i/2 就可以了
  5. 举例推导dp数组:当n为10的时候,如图所示

代码:

class Solution {
public:
    int integerBreak(int n) {
        vector<int> dp(n+1);
        dp[2] = 1;
        for (int i = 3; i <= n; i++){
            for (int j = 1; j <= i/2; j++){
                dp[i] = max(dp[i], max((i-j)*j, dp[i-j]*j));
            }
        }
        return dp[n];
    }
};

96.不同的二叉搜索树

题目链接:

力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台

求解思路:

动规五部曲

  1. 确定dp数组及其下标含义: 1到i为节点组成的二叉搜索树的个数为dp[i]
  2. 确定递推公式:dp[i] += dp[以j为头结点左子树节点数量] * dp[以j为头结点右子树节点数量],即dp[i] += dp[j - 1] * dp[i - j];
  3. dp数组的初始化:dp[0] = 1
  4. 确定遍历顺序:节点数为i的状态是依靠 i之前节点数的状态,因此从前向后遍历
  5. 举例推导dp数组:以n=5为例,如图所示

代码:

class Solution {
public:
    int numTrees(int n) {
        vector<int> dp(n+1);
        dp[0] = 1;
        for (int i = 1; i <= n; i++){
            for (int j = 1; j <= i; j++){
                dp[i] += dp[j-1] * dp[i-j];
            }
        }
        return dp[n];
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值