ICLR 2025 最大黑马:Celcomen 用机器学习与因果推断,改写因果可识别性格局!

当下,机器学习与因果推断的跨界融合,在学术与工业界掀起热潮,强势重塑诸多行业决策逻辑。 医疗场景里,因果推断助力精准锁定药物靶点与副作用机制,个性化治疗方案得以快速发展。金融风控中,反事实分析技术重构信用评分模型,风险预测更精准。自动驾驶凭借因果推理,打破传统感知算法局限,复杂路况决策更稳健。微软亚洲研究院的因果增强推荐系统,引入因果推断使用户行为建模误差直降23%,其实用价值不言而喻。

技术正朝着高效计算架构、跨模态因果迁移、轻量化推断引擎这三大方向迈进。混合架构创新融合图神经网络与因果图模型,提升推理效率;跨模态技术对齐多源数据因果关系,拓展应用场景;轻量化引擎让因果计算能在边缘设备实时运作。

我精选了【12篇】前沿研究成果,希望能帮到你,也欢迎分享给身边的朋友!

对资料感兴趣的可以 [丝 xin] 我~~

【论文1】Estimation of single-cell and tissue perturbation effect in spatial transcriptomics via Spatial Causal Disentanglement

Structural causal model (SCM) between feature variables s1, ..., sg.

Structural causal model (SCM) between feature variables s1, ..., sg.

1.研究方法

Celcomen reproduces its identifiability guarantees in simulations.

Celcomen reproduces its identifiability guarantees in simulations.

该论文提出的Celcomen 模型基于拉格朗日力学构建,通过设定三个假设,将最大化熵函数问题转化为优化实验 / 经验对数似然问题,推导出 k-hop 图卷积网络结构。利用该模型的推理模块 CCE 和生成模块 SCE,可对空间转录组数据进行因果结构学习、基因调控推断以及反事实预测。

2.论文创新点

Celcomen recapitulates known interferon knockout biology in human glioblastoma and
disentangles intra- and inter-cellular gene-gene interactions.

Celcomen recapitulates known interferon knockout biology in human glioblastoma and disentangles intra- and inter-cellular gene-gene interactions.

  1. 提出新模型框架:引入Celcomen,一种基于数学因果关系的生成式图神经网络,能够在空间转录组和单细胞数据中解缠细胞内和细胞间的基因调控,为虚拟组织建模提供了新方法。

  2. 实现因果可识别:证明了模型在因果结构学习和解缠方面的可识别性,克服了大多数深度学习模型违反可识别性原则的问题,能有效区分相关性和因果性,从数据中提取可靠的因果结构。

  3. 提供新研究视角:为机械可解释性提供了一个简单模型,其网络参数可从输入 - 输出计算中恢复,有助于深入理解神经网络的计算过程以及复杂生物系统的内在机制。

【论文2】An efficient catalyst screening strategy combining machine learning and causal inference

Schematic diagram of the CatBoost model

Schematic diagram of the CatBoost model

1.研究方法

Detailed flowchart of the to determine the efficiency of N-doped carbon-based catalysts for BPA degradation.

Detailed flowchart of the to determine the efficiency of N-doped carbon-based catalysts for BPA degradation.

这篇论文提出通过收集整理含氮改性碳基催化剂降解双酚 A(BPA)的实验数据,构建包含 14 个关键参数的数据集。运用 8 种树回归模型预测 BPA 降解效率,经比较选择 CatBoost 模型;利用 DoWhy 因果推断框架分析不同氮官能团对催化性能的影响,将因果推断结果作为先验知识代入 CatBoost 模型,以此优化催化剂筛选与评估过程。

2.论文创新点

Model evaluation indicators for eight models.

Model evaluation indicators for eight models.

  1. 新策略提升筛选效率:提出将因果推断结果作为先验知识代入机器学习模型的策略,通过因果推断预筛选缩小最佳催化剂选择范围,再用CatBoost模型准确评估,把多过程的催化剂筛选简化为单过程,显著提升筛选效率。

  2. 明确关键影响因素:综合运用SHAP分析和因果推断,明确吡啶氮是影响BPA降解性能的关键氮官能团,量化不同氮官能团对降解效率的因果效应,为催化剂设计优化提供关键指标。

  3. 拓展应用前景广泛:该策略可迁移到其他污染物降解过程的催化剂筛选,用于预测和筛选更复杂的催化剂参数,推动高活性催化剂筛选技术发展。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值