Python数据分析学习笔记(三)——数据重构

本文介绍了Python数据分析中数据合并的方法,包括pd.concat()、join()、append()和merge(),并探讨了数据聚合的概念,即如何将相似对象分类成不同组别。内容来源于Datawhale的学习笔记。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、数据的合并

有时候单个excel表格中的文件内容并不完整,完整内容可能是多个excel表格合并的内容

  • pd.concat()

pd.concat()可以用于数据的合并

pd.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False, copy=True)
#obj: DataFrame 或者 Series
#axis:沿着哪个轴合并,=1横向合并
#ignore_index:重新设置DataFrame对象的index值
#join:outer:并 inner:交,即只合并相同列

result = pd.concat([text_left,text_right], axis = 1) #把表的左半部分和右半部分合并起来(横向合并)
  • join()和append()
    join()是一种快速合并的方法,它默认以index作为对齐的列
join(other,on=None,how=“left”,lsuffix=" “,rsuffix=” ",sort=False)
#on:
#how:合并方式,left,right,outer,inner
#lsuffix:接收字符串,用于在左侧重叠的列名后添加后缀名
#rsuffix:接收字符串,用于在右侧重叠的列名后添加后缀名
#sort:接收布尔值,根据连接键对合并的数据进行排序

用于合并表格的时候,join()方法可以用于横向合并,append()方法可以用于纵向合并

  • pd.merge()和append()
DataFrame.merge(right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=('_x', '_y'), copy=True, indicator=False, validate=None)

#left/right:参与合并的左侧/右侧DataFrame
#on:用于连接的列名,未指定时就将left和right列名的交集作为连接键
#how:合并方式,left,right,outer,inner
#left_on/right_on:左侧/右侧DataFrame中用作连接键的列
#left_index/right_index:左侧/右侧的行索引用作其连接键

用于合并表格的时候,merge()方法可以用于横向合并,append()方法可以用于纵向合并

二、数据聚合

数据聚合是指把相似的对象通过静态分类的方法分成不同组别或者更多的子集,让在同一子集中的成员对象有相似的一些属性

df.groupby(['key1']) #使用单特征进行划分
df.groupby(['key1','key2]])#使用多特征对表格划分

df['data1','data2'].groupby(['key1'])#使用单特征对表格中部分元素进行划分

以上学习内容来自Datawhale

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值