使用 Python 的 lru cache 为接口实现高效缓存

在软件开发中,程序性能至关重要。尤其对于一些昂贵的计算或者频繁调用的函数,缓存技术可以显著减少重复的计算时间和资源消耗。Python 为我们提供了一个非常方便的工具:lru_cache。

什么是 lru_cache?

lru_cache 是 Python 标准库中 functools 模块提供的装饰器,用于缓存函数的返回结果。LRU 代表 “Least Recently Used”(最近最少使用),这意味着这个缓存机制会自动删除最久未使用的缓存。

基本用法

使用 lru_cache 非常简单,只需在函数上添加装饰器即可。例如:

from functools import lru_cache

@lru_cache(maxsize=128)
def compute_expensive_operation(x, y):
    # 进行一些昂贵的计算
    return x * y

这里,maxsize=128 表示缓存可以存储最多 128 个结果。如果达到这个限制,lru_cache 会清除最近最少使用的缓存条目。

无限制缓存

如果你愿意缓存所有的函数调用结果,可以使用 maxsize=None:

from functools import lru_cache

@lru_cache(maxsize=None)
def compute_expensive_operation(x, y):
    # 进行一些昂贵的计算
    return x * y

这样可以确保缓存没有上限,但要小心可能造成的内存增长。

自定义缓存清理

有时我们需要在特定条件下清理缓存,例如每天更新一次。以下是一个使用装饰器的例子:

import time
from functools import lru_cache, wraps

CACHE_EXPIRATION = 24 * 60 * 60  # 24小时

def cache_update_decorator(func):
    cached_func = lru_cache(maxsize=None)(func)
    last_cache_update = [0]  # 使用列表作为可变容器

    @wraps(func)
    def wrapper(*args, **kwargs):
        if time.time() - last_cache_update[0] > CACHE_EXPIRATION:
            cached_func.cache_clear()
            last_cache_update[0] = time.time()
        return cached_func(*args, **kwargs)

    return wrapper

@cache_update_decorator
def compute_expensive_operation(x, y):
    # 进行一些昂贵的计算
    return x * y

在这个例子中,cache_update_decorator 确保缓存每 24 小时清理一次。

总结

lru_cache 是一个强大的工具,可以显著提高程序的性能,特别是对于那些重复调用且计算代价高的函数。通过合理的使用和配置缓存策略,开发者可以在不增加代码复杂度的情况下优化应用程序的效率。掌握这一工具,可以让你的代码更高效、更快速。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值