还是畅通工程Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 47972 Accepted Submission(s): 21882
Problem Description
某省调查乡村交通状况,得到的统计表中列出了任意两村庄间的距离。省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可),并要求铺设的公路总长度为最小。请计算最小的公路总长度。
Input
测试输入包含若干测试用例。每个测试用例的第1行给出村庄数目N ( < 100 );随后的N(N-1)/2行对应村庄间的距离,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间的距离。为简单起见,村庄从1到N编号。
当N为0时,输入结束,该用例不被处理。
Output
对每个测试用例,在1行里输出最小的公路总长度。
Sample Input
Sample Output
Source
|
题解 :kruskal算法最小生成树。
代码:
#include<iostream>
#include<algorithm>
#include<cstdio>
using namespace std;
const int MAX=1e6+10;
int par[MAX];
int n,m;
int ant=0;
int ans=0;
struct node{
int x,y;
int val;
}road[MAX];
bool cmp(node a,node b){
return a.val<b.val;
}
void init(int v){
for(int i=0;i<=v;i++)
par[i]=i;
}
int find(int x){
return x==par[x]?x:par[x]=find(par[x]);
}
bool unite(int a,int b){
int fa=find(a);
int fb=find(b);
if(fa!=fb){
par[fa]=fb;
return true;
}
return false;
}
void kruskal(){
ant=0;
ans=0;
for(int i=0;i<m;i++){
if(ant==n-1)
break;
if(unite(road[i].x,road[i].y)){
ant++;
ans+=road[i].val;
}
}
}
int main(){
while(cin>>n&&n){
m=(n*(n-1))/2;
init(n);
for(int i=0;i<m;i++)
scanf("%d%d%d",&road[i].x,&road[i].y,&road[i].val);
sort(road,road+m,cmp);
kruskal();
cout<<ans<<endl;
}
return 0;
}
还是畅通工程Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 47972 Accepted Submission(s): 21882
Problem Description
某省调查乡村交通状况,得到的统计表中列出了任意两村庄间的距离。省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可),并要求铺设的公路总长度为最小。请计算最小的公路总长度。
Input
测试输入包含若干测试用例。每个测试用例的第1行给出村庄数目N ( < 100 );随后的N(N-1)/2行对应村庄间的距离,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间的距离。为简单起见,村庄从1到N编号。
当N为0时,输入结束,该用例不被处理。
Output
对每个测试用例,在1行里输出最小的公路总长度。
Sample Input
Sample Output
Source
|