除法取模与逆元/费马小定理

除法取模与逆元/费马小定理

对于正整数,如果有,那么把这个同余方程中的最小正整数解叫做的逆元。

逆元一般用扩展欧几里得算法来求得,如果为素数,那么还可以根据费马小定理得到逆元为。(都要求a和m互质)

推导过程如下(摘自Acdreamer博客)

这个为费马小定理,m为素数是费马小定理的前置条件。

求a/b=x(mod M)

只要M是一个素数,而且b不是M的倍数,就可以用一个逆元整数b1,通过 a/b=a*b1 (mod M),只能来以乘换除。
费马小定理:对于素数 M 任意不是 M 的倍数的 b,都有: b ^ (M-1) = 1 (mod M)
于是可以拆成:b*b^(M-2)=1(mod M)
于是:a/b=a/b*(b * b ^ (M-2))=a*(b ^ (M-2)) (mod M)

求a/b=x(mod M)

用扩展欧几里德算法算出b1,然后计算a*b1(mod M)

exgcd(b,M,x,y);   b1=x;


当p是个质数的时候有
inv(a) = (p - p / a) * inv(p % a) % p

证明:

设x = p % a,y = p / a
于是有 x + y * a = p
(x + y * a) % p = 0
移项得 x % p = (-y) * a % p
x * inv(a) % p = (-y) % p
inv(a) = (p - y) * inv(x) % p
于是 inv(a) = (p - p / a) * inv(p % a) % p

然后一直递归到1为止,因为1的逆元就是1

[cpp]  view plain  copy
  1. #include<cstdio>  
  2. typedef long long LL;  
  3. LL inv(LL t, LL p)   
  4. {//求t关于p的逆元,注意:t要小于p,最好传参前先把t%p一下   
  5.     return t == 1 ? 1 : (p - p / t) * inv(p % t, p) % p;  
  6. }  
  7. int main()  
  8. {  
  9.     LL a, p;  
  10.     while(~scanf("%lld%lld", &a, &p))  
  11.     {  
  12.         printf("%lld\n", inv(a%p, p));  
  13.     }  
  14. }  

它可以在O(n)的复杂度内算出n个数的逆元

[cpp]  view plain  copy
  1. #include<cstdio>  
  2. const int N = 200000 + 5;  
  3. const int MOD = (int)1e9 + 7;  
  4. int inv[N];  
  5. int init()  
  6. {  
  7.     inv[1] = 1;  
  8.     for(int i = 2; i < N; i ++)  
  9.         inv[i] = (MOD - MOD / i) * 1ll * inv[MOD % i] % MOD;  
  10. }  
  11. int main()  
  12. {  
  13.     init();  
  14. }  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值