除法取模逆元,扩展欧几里得,费马小定理[数学]

一、除法取模逆元

在算法设计中,常会遇到求 a/b mod m的计算,当a很大,或者b很大,使得a/b的值无法直接计算的时候,通常采用逆元的方法,化除法为乘法。(逆元的概念在离散数学中 有学习)

a/b mod m 等价计算为 a*k mod m (k是b的模m乘法逆元)

证明过程:

由于k是b的模m乘法逆元。 即 b*k mod m == 1

b*k = xm + 1

k = (xm+1) / b

则 a * k mod m = a * (xm + 1) / b mod m

 = a/b * (xm + 1) mod m

 = xa/b * m mod m + a / b mod m

 = a / b mod m

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值