ManziHE
码龄5年
关注
提问 私信
  • 博客:1,992
    1,992
    总访问量
  • 10
    原创
  • 1,003,016
    排名
  • 1
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:辽宁省
  • 加入CSDN时间: 2020-02-13
博客简介:

ManziHE的博客

查看详细资料
个人成就
  • 获得0次点赞
  • 内容获得0次评论
  • 获得0次收藏
创作历程
  • 10篇
    2020年
成就勋章
兴趣领域 设置
  • 人工智能
    opencv计算机视觉机器学习深度学习神经网络pytorch
创作活动更多

超级创作者激励计划

万元现金补贴,高额收益分成,专属VIP内容创作者流量扶持,等你加入!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

百度飞桨PaddlePaddle学习

学习了人工智能、机器学习、深度学习的关系机器学习的实现机器学习的实现可以分成两步:训练和预测,类似于我们熟悉的归纳和演绎。深度学习机器学习算法理论在上个世纪90年代发展成熟,在许多领域都取得了成功应用。但平静的日子只延续到2010年左右,随着大数据的涌现和计算机算力提升,深度学习模型异军突起,极大改变了机器学习的应用格局。今天,多数机器学习任务都可以使用深度学习模型解决,尤其在语音、计算机视觉和自然语言处理等领域,深度学习模型的效果比传统机器学习算法有显著提升。神经网络的基本概念人工神经网络包括
原创
发布博客 2020.08.16 ·
328 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Task6 基于深度学习的文本分类3

文本表示方法Part4Transformer原理Transformer是在"Attention is All You Need"中提出的,模型的编码部分是一组编码器的堆叠(论文中依次堆叠六个编码器),模型的解码部分是由相同数量的解码器的堆叠。基于预训练语言模型的词表示基于预训练语言模型的词表示由于可以建模上下文信息,进而解决传统静态词向量不能建模“一词多义”语言现象的问题。最早提出的ELMo基于两个单向LSTM,将从左到右和从右到左两个方向的隐藏层向量表示拼接学习上下文词嵌入。而GPT用Transf
原创
发布博客 2020.08.04 ·
291 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Task5 基于深度学习的文本分类2

文本表示方法 Part3词向量本节通过word2vec学习词向量。word2vec模型背后的基本思想是对出现在上下文环境里的词进行预测。对于每一条输入文本,我们选取一个上下文窗口和一个中心词,并基于这个中心词去预测窗口里其他词出现的概率。因此,word2vec模型可以方便地从新增语料中学习到新增词的向量表达,是一种高效的在线学习算法(online learning)。word2vec的主要思路:通过单词和上下文彼此预测,对应的两个算法分别为:Skip-grams (SG):预测上下文Continu
原创
发布博客 2020.07.31 ·
154 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Datawhale零基础入门NLP Task4 基于深度学习的⽂本分类1

文本表示方法 Part2现有文本表示方法的缺陷在上一章节,我们介绍几种文本表示方法:1.One-hot2.Bag of Words3.N-gram4.TF-IDF也通过sklean进行了相应的实践,相信你也有了初步的认知。但上述方法都或多或少存在一定的问题:转换得到的向量维度很高,需要较长的训练实践;没有考虑单词与单词之间的关系,只是进行了统计。与这些表示方法不同,深度学习也可以用于文本表示,还可以将其映射到一个低纬空间。其中比较典型的例子有:FastText、Word2Vec和Bert。
原创
发布博客 2020.07.27 ·
135 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Datawhale零基础入门NLP Task3

3 Task3 基于机器学习的⽂本分类3.1.2 机器学习模型机器学习是对能通过经验自动改进的计算机算法的研究。机器学习通过历史数据训练出模型对应于人类对经验进行归纳的过程,机器学习利用模型对新数据进行预测对应于人类利用总结的规律对新问题进行预测的过程。机器学习有很多种分支,对于学习者来说应该优先掌握机器学习算法的分类,然后再其中一种机器学习算法进行学习。由于机器学习算法的分支和细节实在是太多,所以如果你一开始就被细节迷住了眼,你就很难知道全局是什么情况的。文本表示方法 Part1在机器学习算法的
原创
发布博客 2020.07.25 ·
116 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Datawhale零基础入门NLP Task2

2.1.2 数据读取2.1.3 数据分析2.1.3.1 句⼦⻓度分析2.1.3.2 新闻类别分布2.1.3.3 字符分布统计但是很奇怪的是我跑出来的结果为什么与实际给出的不同呢
原创
发布博客 2020.07.22 ·
92 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Datawhale零基础入门NLP赛事 - Task1 赛题理解

1.赛题理解接触NLP的预处理、模型构建和模型训练2.赛题数据整合划分出14个候选分类类别:财经、彩票、房产、股票、家居、教育、科技、社会、时尚、时政、体育、星座、游戏、娱乐的文本数据。赛题数据由以下几个部分构成:训练集20w条样本,测试集A包括5w条样本,测试集B包括5w条样本。为了预防选手人工标注测试集的情况,我们将比赛数据的文本按照字符级别进行了匿名处理。3.评测指标评价标准为类别f1_score的均值,选手提交结果与实际测试集的类别进行对比,结果越大越好。4.解题思路思路1:TF-ID
原创
发布博客 2020.07.21 ·
81 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

14天动手学深度学习-Task3

一、批量归一化(BatchNormalization)1.对全连接层做批量归一化位置:全连接层中的仿射变换和激活函数之间。2.对卷积层做批量归⼀化位置:卷积计算之后、应⽤激活函数之前。如果卷积计算输出多个通道,我们需要对这些通道的输出分别做批量归一化,且每个通道都拥有独立的拉伸和偏移参数。 计算:对单通道,batchsize=m,卷积计算输出=pxq 对该通道中m×p×q个元素同时做批量...
原创
发布博客 2020.02.25 ·
333 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

14天动手学深度学习-Task2

一、梯度消失、梯度爆炸以及Kaggle房价预测随机初始化模型参数在神经网络中,通常需要随机初始化模型参数。下面我们来解释这样做的原因。如果将每个隐藏单元的参数都初始化为相等的值,那么在正向传播时每个隐藏单元将根据相同的输入计算出相同的值,并传递至输出层。**在反向传播中,每个隐藏单元的参数梯度值相等。因此,这些参数在使用基于梯度的优化算法迭代后值依然相等。**之后的迭代也是如此。在这种情况下...
原创
发布博客 2020.02.18 ·
269 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

14天动手学深度学习-Task1

softmax和分类模型
原创
发布博客 2020.02.14 ·
188 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏