12.并发之ForkJoin框架详解
0.任务性质类型
0.1 CPU密集型(CPU-bound)
CPU密集型也叫计算密集型,指的是系统的硬盘、内存性能相对CPU要好很多,此时,系统运作大部分的状况是CPU Loading100%,CPU要读/写1/O(硬盘/内存),1/0在很短的时间就可以完成,而CPU还有许多运算要处理,CPU Loading很高。
在多重程序系统中,大部份时间用来做计算、逻辑判断等CPU动作的程序称之CPU bound。例如一个计算圆周率至小数点一千位以下的程序,在执行的过程当中绝大部份时间用在三角函数和开根号的计算,便是属于CPU bound的程序。
CPU bound的程序一般而言CPU占用率相当高。这可能是因为任务本身不太需要访问1/设备,也可能是因为程序是多线程实现因此屏蔽掉了等待I/O的时间。
线程数一般设置为:
线程数=CPU核数+1(现代CPU支持超线程)
0.2 IO密集型(I/Obound)
IO密集型指的是系统的CPU性能相对硬盘,内存要好很多,此时,系统运作,大部分的状况是CPU在等I/O(硬盘/内存)的读/写操作,此时CPU Loading并不高
I/Obound的程序一般在达到性能极限时,CPU占用率仍然较低,这可能是因为任务木身需要大量I/O操作,而pineline做得不是很好,没有充分利用外理器能力
线程数一般设置为:
*线程数=((线程等待时间+线程CPU时间)/线程CPU时间)CPU数目
0.3 CPU密集型VSIO密集型
可以把任务分为计算密集型和IO密集型。
计算密集型任务的特点是要进行大量的计算,消耗CPU资源,比如计算圆周率、对视频进行高清解码等等,全靠CPU的运算能力。这种计算密集型任务虽然也可以用多任务完成,但是任务越多,花在任务切换的时间就越多,CPU执行任务的效率就越低,所以,要最高效地利用CPU,计算密集型任务同时进行的数量应当等于CPU的核心数。
计算密集型任务由于主要消耗CPU资源,因此,代码运行效率至关重要。Python这样的脚本语言运行效率很低,完全不适合计算密集型任务。对于计算密集型任务,最好用C语言编写。
第二种任务的类型是1O密集型, 涉及到网络 磁盘IO的任务都是IO密集刑任务, 这类任务的特点是CPU消耗很少 任务的大部分时间都在等待操作完成 (因为IO的速度远远 低于CPU和内存的速度)。对于IO密集型任务,任务越多,CPU效率越高,但也有一个限度。常见的大部分任务都是IO密集型任务,比如Web应用。
IO密集型任务执行期间,99%的时间都花在O上,花在CPU上的时间很少,因此,用运行速度极快的C语言替换用Pvthon这样运行速度极低的脚本语言,完全无法提升运行效率。对于IO密集型任务,最合适的语言就是开发效率最高(代码量最少)的语言,脚本语言是首选,C语言最差。
1.0 Fork/Join框架
Fork/Join框架是Java7提供了的一个用于并行执行任务的框架, 是一个把大任务分割成若干个小任务,最终汇总每个小任务结果后得到大任务结果的框架。
Fork就是把一个大任务切分为若干子任务并行的执行,Join 就是合并这些子任务的执行结果,最后得到这个大任务的结果。比如计算1+2+……+10000,可以分割成 10 个子任每个子任务分别对 1000个数进行求和,最终汇总这 10个子任务的结果。如下图所示:
1.1 Fork/Jion特性:
1.ForkJoinPool 不是为了替代ExecutorService,而是它的补充,在其些应用场景下性能比ExecutorService 更好。
2.ForkJoinPool主要用于实现“分而治之”的算法,特别是分治之后递归调用的函数,例如 quick sort等。
3.ForkJoinPool 最话合的是计算密集型的任务,如果存在/O,线程间同步,sleep()等会造成线程长时间阳塞的情况时,最好配合使用ManagedBlocker。
2.0 工作窃取算法
工作窃取(work-stealing)算法是指某个线程从其他队列里窃取任务来执行。
我们需要做一个比较大的任务,我们可以把这个任务分割为若于互不依赖的子任务,为了减少线程间的竞争,干是把这些子任务分别放到不同的队列里,并为每个队列创建个单独的线程来执行队列里的任务,线程和队列–对应,比如A线程负责处理A队列里的任务。但是有的线程会先把自己队列里的任务干完,而其他线程对应的队列里还有任务等待外理,干完活的线程与其等着,不如去帮其他线程干活,干是它就去其他线程的队列里窃取一个任务来执行,而在这时它们会访问同一个队列,所以为了减少窃取任务线程和被窃取任务线程之间的竞争,通常会使用双端队列,被窃取任务线程永远从双端队列的头部拿任务执行,而窃取任务的线程永远从双端队列的尾部拿任务执行。
工作窃取算法的优点是充分利用线程进行并行计算,并减少了线程间的竞争,其缺点是在某些情况下还是存在竞争,比如双端队列里只有一个任务时。并且消耗了更多的系统资源,比如创建多个线程和多个双端队列。
1.ForkJoinPool的每个工作线程都维护着一个工作队列(WorkQueue),这是一个双端队列(Deque),里面存放的对象是任务(ForkJoinTask)。
2,每个工作线程在运行中产生新的任务(通常是因为调用了fork())时,会放入工作队列的队尾,并且工作线程在外理自己的工作队列时,使用的是LIFO方式,也就是说每次从队尾取出任务来执行。
3.每个工作线程在外理自己的工作队列同时,会尝试窃取一个任务(或是来自干刚刚提交到pool的任务,或是来自于其他工作线程的工作队列),窃取的任务位于其他线程的工作队列的队首,也就是说工作线程在窃取其他工作线程的任务时,使用的是 FIFO 方式
4.在遇到join()时,如果需要join的任务尚未完成,则会先处理其他任务,并等待其完成。
5.在既没有自己的任务,也没有可以窃取的任务时,进入休眠。
3.0 Fork/Join的使用
ForkJoinTask:我们要使用 ForkJoin框架,必须首先创建一个 ForkJoin任务。它提供在任务中执行fork()和join()操作的机制,通常情况下我们不需要直接继承ForkJoinTask类,而只需要继承它的子类,Fork/Join框架提供了以下两个子类:
RecursiveAction:用于没有返回结果的任务。(比如写数据到磁盘,然后就退出了。一个RecursiveAction可以把自己的工作分割成更小的几块,这样它们可以由独立的线程或者CPU执行。我们可以通过继承来实现一个RecursiveAction。
RecursiveTask:用于有返回结果的任务。(可以将自己的工作分割为若干更小任务,并将这些子任务的执行合并到一个集体结果。可以有几个水平的分割和合并)。
CountedCompleter:在任务完成执行后会触发执行一个自定义的钩子函数 。
ForkJoinPool:ForkJoinTask 需要通过 ForkJoinPool来执行,任务分割出的子任务会添加到当前工作线程所维护的双端队列中,进入队列的头部。当一个工作线程的队列里智时没有任务时,它会随机从其他工作线程的队列的尾部获取一个任务。
使用场景示例:
定义fork/join任务,如下示例,随机生成2000w条数据在数组当中,然后求和。
分析:
RecursiveTask 并行计算,同步有返回值
ForkJoin框架处理的任务基本都能使用递归处理,比如求悲波那契数列等,但递归算法的缺陷是
一只会只用单线程处理
二是递归次数过多时会导致堆栈溢出
ForkJoin解决了这两个问题,使用多线程并发处理,充分利用计算资源来提高效率,同时避免堆栈溢出发生
当然像求悲波那契数列这种小问题直接使用线性管法搞定可能更简单,实际应用中完全没必要使用ForkJoin框加
所以ForkJoin是核弹,是用来对付大家伙的,比如超大数组排序
最佳应用场量:多核,多内存,可以分割计算再合并的计算感集型任务
执行fork/join 任务
4.0 fork/join框架 原理介绍
4.1 常量介绍
FoekJoinPool 与内部类 WorkQueue 共享的一些常量
FoekJoinPool 中相关常量和实例字段
ForkJoinPool的内部状态都是通过一个64位的long型变量ctl来存储,它由四个16位的子域组成:
- AC: 正在运行工作线程数减去目标并行度,高16位
- TC:总工作线程数减去目标并行度,中高16位
- SS: 栈顶等待线程的版本计数和状态,中低16位
- ID:栈顶WorkQueue在池中的索引(poollndex),低16位
ForkJoinPool.WorkQueue中的相关属性:
4.2 异常处理
ForkJoinTask 再执行的时候可能会抛异常,但是我们没有办法在主线程里直接捕获异常,所以ForkJoinTask 提供了isCompletedAbnormally()方法来检查任务是否已经抛出异常或已经被取消了,并且可以通过ForkJoinTask 的getException 方法获取异常,如下
getException 方法返回Throwable 对象,如果任务被取消了则返回CancellationException、如果任务没有完成或者抛出异常则返回 null。
4.3 ForkJoinPool构造函数
其完整构造方法如下
重要参数解释
①parallelism:并行度(the parallelismlevel),默认情况下跟我们机器的dpu个数保持一致,使用RuntimegetRuntime().availableProcessors()可以得到我们机器运行时可用的 CPU个数。
②factory:创建新线程的工厂(the factory for creating newthreads)。默认情况下使用ForkJoinWorkerThreadFactory defaultForkJoinWorkerThreadFactory
③handler:线程异常情况下的处理器(Thread.UncaughtExceptionHandler handler),该处理器在线程执行任务时由于某些无法预料到的错误而导致任务线程中断时进行一些处理,默认情况为null。
④asyncMode:这个参数要注意,在ForkJoinPool中,每一个工作线程都有一个独立的任务队列,asyncMode表示工作线程内的任务队列是采用何种方式进行调度,可以是先进先出FIFO,也可以是后进先出LIFO。如果为true,则线程池中的工作线程则使用先进先出方式进行任务调度,默认情况下是false