题目描述
输入整数数组 arr
,找出其中最小的 k
个数。例如,输入4、5、1、6、2、7、3、8这8个数字,则最小的4个数字是1、2、3、4。
这是标注为“简单”的一道题目,但是题解版本很多,涉及的点也很深很全(菜鸟本菜),因此记录下自己的学习过程。
Me
我的解题思路是使用冒泡排序算法,具体代码如下:
class Solution {
public int[] getLeastNumbers(int[] arr, int k) {
int [] result = new int[k];
int tmp, index = 0;
boolean b = true, cont = true;
while (index < k) {
// b记录一次冒泡过程中是否发生了数据交换
b = false;
// 一次冒泡
for (int i=arr.length-1; i>0 && cont; i--) {
if (arr[i] < arr[i-1]) {
tmp = arr[i];
arr[i] = arr[i-1];
arr[i-1] = tmp;
b = true;
}
}
// 如果数据没有发生交换,说明当前序列已经有序,将cont设置为false,停止冒泡
if (b == false) cont=false;
// 每次冒泡之后index对应的值是排序第(index+1)的最小值
result[index] = arr[index];
index ++;
}
return result;
}
}
可以明显看出来,写得不是很优雅,用时和内存消耗也只超过了百分之十左右的同学。
执行用时: 850 ms
内存消耗: 40 MB
快排
啥是快排?官方作者给的解释如下。好晕……
我们知道快排的划分函数每次执行完后都能将数组分成两个部分,小于等于分界值 pivot 的元素的都会被放到数组的左边,大于的都会被放到数组的右边,然后返回分界值的下标。与快速排序不同的是,快速排序会根据分界值的下标递归处理划分的两侧,而这里我们只处理划分的一边。
我们定义函数 randomized_selected(arr, l, r, k) 表示划分数组 arr 的 [l,r] 部分,使前 k 小的数在数组的左侧,在函数里我们调用快排的划分函数,假设划分函数返回的下标是 pos(表示分界值 pivot 最终在数组中的位置),即 pivot 是数组中第 pos - l + 1 小的数,那么一共会有三种情况:
如果 pos - l + 1 == k,表示 pivot 就是第 k 小的数,直接返回即可;
如果 pos - l + 1 < k,表示第 k 小的数在 pivot 的右侧,因此递归调用 randomized_selected(arr, pos + 1, r, k - (pos - l + 1));
如果 pos - l + 1 > k,表示第 k 小的数在 pivot 的左侧,递归调用 randomized_selected(arr, l, pos - 1, k)。
函数递归入口为 randomized_selected(arr, 0, arr.length - 1, k)。在函数返回后,将前 k 个数放入答案数组返回即可。
直接解析代码:
class Solution {
public static int[] getLeastNumbers(int[] arr, int k) {
randomizedSelected(arr, 0, arr.length - 1, k);
int[] vec = new int[k];
for (int i = 0; i < k; ++i) {
vec[i] = arr[i];
}
return vec;
}
// 递归调用,最终arr的前k个值为前k最小值
private static void randomizedSelected(int[] arr, int l, int r, int k) {
if (l >= r) {
return;
}
// pos为随机取值快排后的分界索引
int pos = randomizedPartition(arr, l, r);
// num为以pos位的值为分界值后时pos与l之间的值的个数
int num = pos - l + 1;
if (k == num) {
return;
} else if (k < num) {
randomizedSelected(arr, l, pos - 1, k);
} else {
randomizedSelected(arr, pos + 1, r, k - num);
}
}
// 基于随机的划分
private static int randomizedPartition(int[] nums, int l, int r) {
// 随机生成index i, 此值用于选取分界值; Random().nextInt(x)生成一个范围在0~x(不包含x)内的任意正整数
int i = new Random().nextInt(r - l + 1) + l;
// 交换nums中index为r和i的值
swap(nums, r, i);
// 以r位置的值为分界值,最后返回的数值为r位置对应的值所处的位置
return partition(nums, l, r);
}
// 该方法返回的新的数组中,以(i+1)位置作为分界,左侧为小于或等于r位数值的值,右侧为大于r位数值的值,(i+1)位置的数值为r
private static int partition(int[] nums, int l, int r) {
int pivot = nums[r];
int i = l - 1;
for (int j = l; j <= r - 1; ++j) {
if (nums[j] <= pivot) {
i = i + 1;
swap(nums, i, j);
}
}
swap(nums, i + 1, r);
return i + 1;
}
// 交换nums中i和j位的数值
private static void swap(int[] nums, int i, int j) {
int temp = nums[i];
nums[i] = nums[j];
nums[j] = temp;
}
}
作者:LeetCode-Solution
链接:https://leetcode-cn.com/problems/zui-xiao-de-kge-shu-lcof/solution/zui-xiao-de-kge-shu-by-leetcode-solution/
来源:力扣(LeetCode)
堆
我们用一个大根堆实时维护数组的前 k 小值。首先将前 k 个数插入大根堆中,随后从第 k+1 个数开始遍历,如果当前遍历到的数比大根堆的堆顶的数要小,就把堆顶的数弹出,再插入当前遍历到的数。最后将大根堆里的数存入数组返回即可。在下面的代码中,由于 C++ 语言中的堆(即优先队列)为大根堆,我们可以这么做。而 Python 语言中的堆为小根堆,因此我们要对数组中所有的数取其相反数,才能使用小根堆维护前 k 小值。
class Solution {
public static int[] getLeastNumbers(int[] arr, int k) {
int[] vec = new int[k];
if (k == 0) { // 排除 0 的情况
return vec;
}
// PriorityQueue默认是一个小顶堆,然而可以通过传入自定义的Comparator函数来实现大顶堆。
PriorityQueue<Integer> queue = new PriorityQueue<Integer>(new Comparator<Integer>() {
public int compare(Integer num1, Integer num2) {
return num2 - num1;
}
});
for (int i = 0; i < k; ++i) {
queue.offer(arr[i]);
}
for (int i = k; i < arr.length; ++i) {
if (queue.peek() > arr[i]) {
queue.poll();
queue.offer(arr[i]);
}
}
for (int i = 0; i < k; ++i) {
vec[i] = queue.poll();
}
return vec;
}
}
作者:LeetCode-Solution
链接:https://leetcode-cn.com/problems/zui-xiao-de-kge-shu-lcof/solution/zui-xiao-de-kge-shu-by-leetcode-solution/
来源:力扣(LeetCode)