@Leetcode二叉树的最小深度
之前有一个求最大深度的问题,似乎与本题十分相像?于是想耍小聪明的笔者决定借鉴一下之前的思路。果不其然,还真的挺像哦。请看题干:
给定一个二叉树,找出其最小深度。
最小深度是从根节点到最近叶子节点的最短路径上的节点数量。
说明: 叶子节点是指没有子节点的节点。
示例:
给定二叉树 [3,9,20,null,null,15,7],
返回它的最小深度 2.
题目简单明了,来看看笔者投机取巧的代码:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
int minDepth(TreeNode* root) {
if(root==NULL)
return 0;
if(root->left==NULL&&root->right==NULL)
return 1;
int leftmin=minDepth(root->left)+1;
int rightmin=minDepth(root->right)+1;
if(leftmin==1)
return rightmin;
if(rightmin==1)
return leftmin;
if(leftmin>rightmin)
return rightmin;
else
return leftmin;
}
};
肉眼可见的混子代码,和maxDepth有异曲同工之妙。都是定义一个最小(最大)的左边和右边然后在递归判断返回时比较左右的大小决定选谁,似乎连思路都是相同的,但笔者花了一段时间琢磨了一下为什么没有通过,原来是特判的情况。
思路在你仔细分析了样例之后就有了,每次的递归都会因为所判断结点不为空而加一,再根据所判断的子结点是否为空或两结点都为空来决定返回给上一层的值,只要能画一次树的判断图,相信你一定能明白我的意思。
有些没有在代码中加入特判的coder会发现第10个样例,也就是[1,2]这个样例一直过不去,因为在题中顺着判断的情况下这种情况答案确实会是1,只有根结点的意思,然而这种情况答案是2,是两层,于是我想了想在代码之中加上了if的两层树的情况的特判就过了。
就这个题,我们就题论题,可以说还有很多的解法,也有很多的更简单的解法,比如深度搜索甚至宽度搜素都可以,但是笔者一直有一个一直坚持的顽固的想法,那就是你能想到的第一个并且正确,还不算糟糕的方法,一定是最适合你的方法,那可能不是最好的解题方法,但一定是你用的最顺手的,希望大家都能有所收获哦!