邮票组合问题

23 篇文章 0 订阅
文章描述了一个使用3分和5分邮票组合成不同邮资的数学问题。通过编程实现,利用双重循环生成所有可能的组合,并存储在数组中。然后遍历数组,输出非零项,统计方案总数。输入包含两个整数,分别代表3分和5分邮票的数量,输出包括所有可能的邮资组合及方案数量。
摘要由CSDN通过智能技术生成

邮票组合

题目描述
某人有 mm 张 3 分的邮票和 nn 张 5 分的邮票,用这些邮票中的一张或若干张(也可以是 0 张)可以得到多少种不同的大于 0 的邮资?

请找出可能组合的邮资方案总数,并按照由小到大的顺序输出所有不重复的大于 0 的方案!(5.1.97)

如:11 张 33 分和 11 张 55 分可能的邮资组合如下

0 张 3 分 ++ 1 张 5 分 == 5 分

1 张 3 分 ++ 0 张 5 分 == 3 分

1 张 3分 ++ 1张 5 分 == 8 分

因此,可能的方案有 3种,排序后的结果是:3 5 8 。

输入
两个整数,mm 和 nn ,分别代表了 33 分和 55 分的邮票的数量!(1 <=m,n<=100)

输出
输出有两行,第一行输出这两种邮票能组合的不同的大于 00 的邮资方案,数与数之间用空格隔开。

第二行输出可能的方案总数。

思路
首先,这是一道要我们用方法找出全部组合的问题。毫无疑问,数组就是这种问题最好的解决方法。我们一开始就要计算出所有组合的最大值800,再对m和n两个变量,之后再用桶排的方法,讲数组的下标表示数字,里面将计算过一次或多次的数放1,之后再将数组进行循环输出,里面的不为零的数就可以输出数组下标就行了。

代码

#include<bits/stdc++.h>
using namespace std;

int m,n,ans,a[810];
int main()
{
   cin>>m>>n;
   for(int i=0;i<=n;i++)
   {
   	   for(int j=0;j<=m;j++)
   	     if((5*i+3*j)!=0)
   	     {
           a[5*i+3*j]=1;
	     }
   }
   for(int i=1;i<=800;i++)
     if(a[i]!=0)
     {
       cout<<i<<" ";
       ans++;
     }
   cout<<endl;
   cout<<ans;
   return 0;
}
### 回答1: 这个人可以用他拥有的四3邮票和三5邮票一张或多组合,得到不同的邮资。 如果只用一张邮票,那么他可以得到3或5的邮资,共有两种情况。 如果用两邮票,那么他可以从43邮票和35邮票任选2,进行组合得到不同的邮资,共有以下几种情况: - 两3邮票:6 - 一张3邮票一张5邮票:8 - 两5邮票:10 如果用三邮票,那么他可以从43邮票和35邮票任选3,进行组合得到不同的邮资,共有以下几种情况: - 三3邮票:9 - 两3邮票一张5邮票:11 - 一张3邮票和两5邮票:13 - 三5邮票:15 如果用四邮票,那么他可以从43邮票和35邮票任选4,进行组合得到不同的邮资,只有一种情况: - 四3邮票:12 因此,他可以用这些邮票一张若干得到12种不同的邮资,别为3、5、6、8、9、10、11、13、15和12(两3邮票)。 ### 回答2: 某人有四3邮票和三5邮票,要求用这些邮票一张若干进行邮寄,求出可以得到多少种不同的邮资。 首先,我们需要知道这四3邮票和三5邮票可以表示的邮资范围。这是很简单的,我们只需要列出所有的可能性即可: - 用一张3邮票,可以表示3的邮资 - 用两3邮票,可以表示6的邮资 - 用三3邮票,可以表示9的邮资 - 用四3邮票,可以表示12的邮资 - 用一张5邮票,可以表示5的邮资 - 用两5邮票,可以表示10的邮资 - 用三5邮票,可以表示15的邮资 根据上述列表,我们可以得到7种不同的邮资。但是需要注意的是,这里所说的“不同的邮资”,并不意味着所有的邮资都是唯一的。例如,如果要邮寄8的信件,有两种不同的组合:一种是用两3邮票,另一种是用一张3邮票一张5邮票。但这并不能算作两种不同的邮资,因为它们都是8。 因此,应该将所有的组合都列举出来,然后判断是否重复,最终才能得到准确的答案。但是,不幸的是,如果用简单的列举法,这个问题就会非常复杂,而且非常容易出错。因此,我们应该采用更为高效的算法,来解决这个问题。 一种比较好的算法是动态规划法(Dynamic Programming)。该算法包含如下几个步骤: - 定义状态。由于需要表示各种不同的邮资,因此我们可以定义一个二维数组f(i,j),其i表示使用前i种邮票(即前i个3邮票和前i个5邮票),j表示所需的邮资。该数组的每个元素f(i,j)表示,使用前i种邮票,能否组成j的邮资。如果能组成,就标记为“true”,否则为“false”。 - 初始化状态。对于所有的i,有f(i,0)=true(即无论使用前i种邮票,都可以组成0的邮资)。对于所有的j,有f(0,j)=false(即无论使用哪些邮票,都无法组成非零的邮资)。 - 状态转移方程。对于每一个状态f(i,j),有以下两种情况: - 如果第i种邮票可以用来组成当前的邮资j,那么 f(i,j) = f(i-1,j) || f(i,j-vi),其vi表示第i种邮票的面值(即3或5)。这个式子的意思是,第i种邮票可以用或者不用,如果用了,那么所需的邮资就变成了j-vi,此时前i-1种邮票就可以用来组成这个邮资;如果不用,那么问题就转化成了使用前i-1种邮票来组成邮资j。 - 如果第i种邮票不能用来组成当前的邮资j,那么 f(i,j) = f(i-1,j)。这个式子的意思是,第i种邮票不能用来组成当前的邮资,只能使用前i-1种邮票来组成。 根据上述状态转移方程,可以递推出f数组的所有元素。最终,如果f(7,j)为true,那么说明可以用这些邮票得到邮资j,否则不能。 总之,这个问题可以用动态规划算法来解决,算法的时间复杂度是O(nm),其n是使用的邮票种数,m是最大的邮资(即15)。因此,该算法在计算这个问题时非常高效,而且不容易出错。 ### 回答3: 要计算某人用这些邮票可以得到多少种不同的邮资,我们需要先了解以下基本知识: 1. 邮资可以用邮票的面值加和得出; 2. 同一面值的邮票可以互相替换; 3. 不同面值的邮票不能互相替换。 根据以上知识,我们可以列出所有可能的邮资情况如下: 3:3、6、9、12 5:5、10、15 为了简化计算,我们可以采用穷举法,将所有可能的邮票组合列举出来,再将邮票的面值相加得到所有可能的邮资。具体步骤如下: 1. 使用一张3邮票,得到3的邮资; 2. 使用两3邮票,得到6的邮资; 3. 使用三3邮票,得到9的邮资; 4. 使用四3邮票,得到12的邮资; 5. 使用一张5邮票,得到5的邮资; 6. 使用两5邮票,得到10的邮资; 7. 使用三5邮票,得到15的邮资; 8. 使用一张3邮票一张5邮票,得到8的邮资; 9. 使用一张3邮票和两5邮票,得到13的邮资; 10. 使用两3邮票一张5邮票,得到11的邮资; 11. 使用两3邮票和两5邮票,得到16的邮资; 12. 使用三3邮票一张5邮票,得到14的邮资; 13. 使用三3邮票和两5邮票,得到19的邮资; 14. 使用四3邮票一张5邮票,得到17的邮资; 15. 使用四3邮票和两5邮票,得到22的邮资。 综上所述,某人用这些邮票可以得到15种不同的邮资,别为3、5、6、8、9、10、11、12、13、14、15、16、17、19、22
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值