随机梯度下降法相关

本文探讨大规模机器学习中的优化问题,重点介绍随机梯度下降法(SGD)及其变种,如mini-batch、动量法、梯度平均法、迭代平均法等。这些方法旨在平衡计算成本和收敛速度,其中mini-batch能以额外计算代价换取更快收敛,动量法和梯度平均法优化下降方向,而迭代平均法则平均迭代点位置。此外,还提及了SAG和IAG两种一阶收敛算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在大规模机器学习问题中,很多算法最终都归结为一个这样的优化问题:

minimizeωRpg(ω):=1ni=1nfi(ω).

其中 p 维向量 ω 是待优化的模型参数, fi(ω)=L(ω,xi,yi) 是第 i 个样本 (xi,yi) 对应的损失函数。例如,在线性回归中
fi(ω)=(yiωTxi)2,

在逻辑回归中
fi(ω)=yiωTxi+log(1+exp(ωTxi)),

λ 为正则化系数。在SVM中
fi(ω)=Lhinge(1yiωTxi).

这一类问题可以用一般的梯度型优化算法来求解,如梯度下降法(Gradient Descent, GD).其迭代格式为
ω(k+1)=ω(k)αkg(ω
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值