难度:★★☆☆☆
一、题目描述
日本一位中学生发现一个奇妙的定理,请角谷教授证明,而教授无能为力,于是产生了这个猜想。猜想的内容:任给一个自然数,若为偶数则除以2,若为奇数则乘3加1,得到一个新的自然数后按上面的法则继续演算。若干次后得到的结果必为1。请编写代码验证该猜想:求经过多少次运算可得到自然数1。 如:输入22
22/2=11
11*3+1=34
34/2=17
17*3+1=52
52/2=26
26/2=13
13*3+1=40
40/2=20
20/2=10
10/2=5
5*3+1=16
16/2=8
8/2=4
4/2=2
2/2=1
二、解题
1.思路
分析:
我们只需要加入一个循环结构及一个判断奇偶数即可,奇偶数判断的话就用与2取模看看是不是为0来判断。若为奇数就进行3*n+1;若为偶数则进行n/2。
2.代码
代码来啦:
#include <bits/stdc++.h>
using namespace std;
int main(){
int a,sum=0;
cin>>a;
scanf("%d", &a);
while (a != 1){
if (a % 2 == 0){
a /= 2;
sum++;
}
else{
a = a*3 + 1;
sum++;
}
}
cout<<sum;
return 0;
}
3.运行结果
输入:
22
输出:
15