国科大2023【矩阵分析与应用(李保滨)】期末考试(回忆版)

国科大2023【矩阵分析与应用(李保滨)】期末考试(回忆版)

一共七道大题,没有判断以及填空,全是简答、计算和证明。

第一题

包含三小道简答题。

第一道是说明在 R n × n \mathbb R^{n\times n} Rn×n中的矩阵 A \bf A A唯一地分解成对称矩阵 A 1 \bf A_1 A1和反对称矩阵 A 2 \bf A_2 A2,即 A = A 1 + A 2 {\bf A} = {\bf A}_1 + {\bf A}_2 A=A1+A2. 然后说明 < A 1 ∣ A 2 > = 0 {<{\bf {A}}_1|{\bf {A}}_2>=0} <A1A2>=0.

第二道题是求一个 2 × 2 2 \times 2 2×2的矩阵的 F r o b e n i u s   n o r m Frobenius \ norm Frobenius norm 1 – n o r m 1–norm 1–norm 2 – n o r m 2–norm 2–norm ∞ – n o r m \infty–norm ∞–norm.

第三题是写出 G r a m – S c h m i d t Gram–Schmidt GramSchmidt正交化过程以及 M o d i f i e d   G r a m – S c h m i d t Modified\ Gram–Schmidt Modified GramSchmidt正交化过程.

第二题

给定一个线性方程组
{ λ x 1 + x 2 + x 3 = 1 x 1 + λ x 2 + x 3 = λ x 1 + x 2 + λ x 3 = λ 2 \begin{equation} \left \{ \begin{aligned} \lambda x_1+x_2+x_3&=1 \\ x_1+\lambda x_2+x_3 &=\lambda \\ x_1+x_2+\lambda x_3&=\lambda ^2 \end{aligned} \right. \notag \end{equation} λx1+x2+x3x1+λx2+x3x1+x2+λx3=1=λ=λ2

问当 λ \lambda λ取何值时,线性方程组无解、有唯一解、有无穷解,并写出无穷解的通解形式.

第三题

证明题,教材后原题
第四题
答案:
答案

第四题

教材后原题,主要是考察对反射矩阵的在几何空间中的直观理解。
在这里插入图片描述
答案:
在这里插入图片描述

第五题

利用 G i v e n s Givens Givens约减求 P A = T \bf PA=T PA=T,数很好算的一道题,分值为15分也很高.

第六题

给定一个在 R 2 × 2 \mathbb R^{2\times 2} R2×2上的线性变换 T ( X ) = B X − X B T\bf{(X)=BX-XB} T(X)=BXXB B = ( 1 1 − 1 − 1 ) {\bf B}=\left ( \begin{array}{cc} 1 & 1 \\ -1 &-1 \end{array} \right ) B=(1111) R 2 × 2 \mathbb R^{2\times 2} R2×2的一组基 B = { ( 1 0 0 0 ) , ( 0 1 0 0 ) , ( 0 0 1 0 ) , ( 0 0 0 1 ) } {{\mathcal B} = \left \{ \left ( \begin{array}{cc} 1 & 0 \\ 0 &0 \end{array} \right ) ,\left ( \begin{array}{cc} 0& 1 \\ 0 &0 \end{array} \right ),\left ( \begin{array}{cc} 0& 0 \\ 1 &0 \end{array} \right ),\left ( \begin{array}{cc} 0 & 0 \\ 0 &1 \end{array} \right ) \right\}} B={(1000),(0010),(0100),(0001)},求 [ T ] B {[{\bf T}]_{\mathcal{B}}} [T]B.

(注:这道题的数记得不清楚了,可能有些出入,但是基确实给的是标准基,比较好算)

第七题

定义 n × n n \times n n×n的矩阵
Q = ( 0 0 … 0 1 1 0 … 0 0 0 1 … 0 0 ⋮ ⋮ ⋱ ⋮ ⋮ 0 0 … 1 0 ) {\bf Q} =\left( \begin{array}{ccccc} 0 & 0 & \ldots &0 & 1\\ 1 & 0 & \ldots & 0 & 0\\ 0 & 1 & \ldots & 0 & 0\\ \vdots & \vdots & \ddots & \vdots &\vdots\\ 0 & 0 & \ldots & 1 & 0\\ \end{array} \right) Q= 0100001000011000
(1) 求 n = 5 n=5 n=5时的 Q {\bf Q} Q Q 2 {\bf Q}^2 Q2 Q 3 {\bf Q}^3 Q3 Q 4 {\bf Q}^4 Q4 Q 5 {\bf Q}^5 Q5.
(2) 写出 c 0 I + c 1 Q + c 2 Q 2 + c 3 Q 3 + ⋯ + c n − 1 Q n − 1 c_0 {\bf I} + c_1 {\bf Q} + c_2 {\bf Q}^2 + c_3 {\bf Q}^3 + \cdots +c_{n-1} {\bf Q}^{n-1} c0I+c1Q+c2Q2+c3Q3++cn1Qn1的矩阵形式.

这道题老师说一开始没有第一问,怕我们做不出来,添加了第一问的一个引导,算完第一问就可以发现第二问的规律了。

总结

主要是作业题和教材后原题,但是教材里题目太多了,做也做不完,今年和往年的题目形式又不一样,尤其是和2014-2019年的题型有比较大差异,但是作业题都会做还是能拿不少分的。
(吐槽:修正的施密特正交化过程没背过,证明题过程写的自己都看不懂了,计算题只要涉及 λ \lambda λ的一个没算出来,这就是为什么没放计算题答案了,因为我也不会T_T)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值