修理牛棚(题目)

题目描述

在一个夜黑风高,下着暴风雨的夜晚, farmer John 的牛棚的屋顶、门被吹飞了。 好在许多牛正在度假,所以牛棚没有住满。 牛棚一个紧挨着另一个被排成一行,牛就住在里面过夜。有些牛棚里有牛,有些没有。所有的牛棚有相同的宽度。自门遗失以后, farmer John 必须尽快在牛棚之前竖立起新的木板。他的新木材供应商将会供应他任何他想要的长度,但是吝啬的供应商只能提供有限数目的木板。 farmer John想将他购买的木板总长度减到最少。

给出:可能买到的木板最大的数目 �(1≤�≤50)M(1≤M≤50)、牛棚的总数 �(1≤�≤200)S(1≤S≤200)、 牛棚里牛的总数 �(1≤�≤�)C(1≤C≤S) 和牛所在的牛棚的编号 �����������(1≤�����������≤�)stallnumber(1≤stallnumber≤S),计算拦住所有有牛的牛棚所需木板的最小总长度。输出所需木板的最小总长度作为答案。

输入输出格式

输入

第 1 行: 木板最大的数目 �M, 牛棚的总数 �S 和牛的总数 �C, 用空格分开。
第 2 到 C+1 行: 每行包含一个整数,表示牛所占的牛棚的编号。

输出

单独的一行包含一个整数表示所需木板的最小总长度。

样例

输入1

4 50 18
3 
4 
6 
8 
14
15 
16 
17 
21
25 
26 
27 
30 
31 
40 
41 
42 
43

输出1

25

时间及空间限制

1s, 256MB.

#include<bits/stdc++.h>//这道题要用贪心,局部最优导致全局最优
using namespace std;
int a[201],b[201];
bool cmp(int a,int b)
{
    return a>b;
}
int main(){
    int m,i,c,s,sum; 
    cin>>m>>s>>c;
    for(i=1;i<=c;i++)
    {
        cin>>a[i];
    }
    sort(a+1,a+c+1);
    for(i=1;i<=c-1;i++)
    {
        b[i]=a[i+1]-a[i]-1;
    }
    sort(b+1,b+c,cmp);
    sum=a[c]-a[1]+1;
    if(m>=c)
    {
        cout<<c;
    }
    else
    {
        for(i=1;i<=m-1;i++)
        {
            sum=sum-b[i];
        }
        cout<<sum;
    }
    
}

### C++ 编程解决牛棚修复问题 对于牛棚修复问题,在处理此类区间覆盖类题目时,通常采用贪心算法来实现最优解。下面提供一种基于此思路的C++程序示例: ```cpp #include <iostream> #include <vector> #include <algorithm> using namespace std; struct Interval { int start; int end; }; bool compare(const Interval& i1, const Interval& i2) { return i1.start < i2.start || (i1.start == i2.start && i1.end < i2.end); } int minBoardsToCover(vector<Interval>& intervals) { sort(intervals.begin(), intervals.end(), compare); int count = 0; // 记录所需木板数量 int currentEnd = -1; // 当前已覆盖的最大位置 for (auto interval : intervals) { if (interval.start > currentEnd) { // 如果当前区间的起点超过了已经覆盖的部分,则需要新的木板 ++count; currentEnd = interval.end; } else if (interval.end > currentEnd) { // 合并重叠部分 currentEnd = interval.end; } } return count; } ``` 上述代码定义了一个`minBoardsToCover`函数用于计算最小所需的木板块数以完全覆盖给定的一系列不连续区间[^1]。 #### 输入输出说明: - **输入**:一系列表示待修缮区域范围的整数对(即起始点和终点),这些数据应当被读入至一个二维数组或向量中; - **输出**:返回能够覆盖所有指定区域所需要的最少木板的数量; 该方法通过先按左端点升序排列各段区间,并遍历整个序列寻找未被先前放置过的木板所触及的位置来进行优化求解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值