在商品购买的过程中,库存的抵扣过程,一般操作如下:
2、根据下单的数量,计算库存是否足够,如果存库不足则抛出库存不足的异常,如果库存足够,则减去扣除的库存得到最新的库存剩余值。
// 根据商品id获取商品剩余库存
select stock_remaing from stock_table where id=${goodsId};
// 操作库存
// 比较库存
if(stock_remaing <quantity){
// 抛出库存不足的异常
}
else{
// 抵扣以后的库存值
int new_stock=stock_remaing - quantity;
}
// 根据商品id设置计算后的库存
update stock_table set stock_remaing =${new_stock} id=${goodsId};
如果数据库事务的隔离级别不是串行化(serializable),根据事务的特性,在并发修改的时候,可能会出现写覆盖的问题。
加锁更新存库
为了在事务控制中,防止写覆盖,你会想到使用select for update的方式,将该商品的库存锁住,然后执行余下的操作。
流程如下:
以上,使用悲观锁方式,在分布式服务中,如果并发情况比较高的时候,扣减库存的操作是串行操作,效率很低。
在更新的时候,使用(CAS+版本号更新)+重试条件(重试次数或者重试时间限制)乐观锁的方式更新库存。此时,如果,客户A和客户B同时读取到库存剩余100,在更新的时候,有一个操作会失败。
该种方式可以大大提高并发性,也可以保证数据的一致性;通过重试次数和重试时间的条件控制,可以防止过多的重试带来的数据库压力。
在抵扣库存的时候,有的人提议不执行select,计算,set三段式的操作,直接扣减的方式,并且对于扣减到小于零的情况作了判断。伪代码如下:
update stock_table set remaing_stock=remaing_stock-${quantity}
where id =商品id
and remaing_stock>${quantity};
由于没有研究过redis源码,对于这种方式参考了大牛的回复,答案是可以使用redis的事务性扣减余额,但在CAS机制上比mysql没有优势,高性能是因为其内存存储的原因,带来的副作用是数据有丢失风险。
原文:https://blog.csdn.net/new_com/article/details/105568124
推荐3个原创springboot+Vue项目,有完整视频讲解与文档和源码:
【dailyhub】【实战】带你从0搭建一个Springboot+elasticsearch+canal的完整项目视频讲解:https://www.bilibili.com/video/BV1Jq4y1w7Bc/
完整开发文档:https://www.zhuawaba.com/post/124
线上演示:https://www.zhuawaba.com/dailyhub
【VueAdmin】手把手教你开发SpringBoot+Jwt+Vue的前后端分离后台管理系统视频讲解:https://www.bilibili.com/video/BV1af4y1s7Wh/
完整开发文档前端:https://www.zhuawaba.com/post/18
完整开发文档后端:https://www.zhuawaba.com/post/19
线上演示:https://www.markerhub.com/vueadmin/
【VueBlog】基于SpringBoot+Vue开发的前后端分离博客项目完整教学视频讲解:https://www.bilibili.com/video/BV1PQ4y1P7hZ
完整开发文档:https://www.zhuawaba.com/post/17
---
关注我,学Java