彻底理解android的各种Flag以及|&运算

我们在看安卓源码的时候经常看到类似

flags |= PackageManager.MATCH_DIRECT_BOOT_AWARE | PackageManager.MATCH_DIRECT_BOOT_UNAWARE

这样的代码,让人一头雾水。

那么这个代码到底是什么意思呢?让我们来一步一步解读

比如我们拿Intent源码来说

我们按数值大小给他排个序如下:

public static final int FLAG_ACTIVITY_NEW_TASK                        = 0x10000000;
public static final int FLAG_ACTIVITY_MULTIPLE_TASK                   = 0x08000000;
public static final int FLAG_ACTIVITY_CLEAR_TOP                       = 0x04000000;
public static final int FLAG_ACTIVITY_FORWARD_RESULT                  = 0x02000000;
public static final int FLAG_ACTIVITY_PREVIOUS_IS_TOP                 = 0x01000000;
public static final int FLAG_ACTIVITY_EXCLUDE_FROM_RECENTS            = 0x00800000;
public static final int FLAG_ACTIVITY_BROUGHT_TO_FRONT                = 0x00400000;
public static final int FLAG_ACTIVITY_RESET_TASK_IF_NEEDED            = 0x00200000;
public static final int FLAG_ACTIVITY_LAUNCHED_FROM_HISTORY           = 0x00100000;
public static final int FLAG_ACTIVITY_CLEAR_WHEN_TASK_RESET           = 0x00080000;
public static final int FLAG_ACTIVITY_NO_USER_ACTION                  = 0x00040000;
public static final int FLAG_ACTIVITY_REORDER_TO_FRONT                = 0X00020000;
public static final int FLAG_ACTIVITY_NO_ANIMATION                    = 0X00010000;
public static final int FLAG_ACTIVITY_CLEAR_TASK                      = 0X00008000;
public static final int FLAG_ACTIVITY_TASK_ON_HOME                    = 0X00004000;
public static final int FLAG_ACTIVITY_RETAIN_IN_RECENTS               = 0x00002000;
public static final int FLAG_ACTIVITY_LAUNCH_ADJACENT                 = 0x00001000;
public static final int FLAG_ACTIVITY_MATCH_EXTERNAL                  = 0x00000800;
public static final int FLAG_ACTIVITY_REQUIRE_NON_BROWSER             = 0x00000400;
public static final int FLAG_ACTIVITY_REQUIRE_DEFAULT                 = 0x00000200;

我们知道,32位系统里面最大的整型是2^32  ,转换成十六进制数就是0x100000000

也就是一个9位的十六进制数,但是这个9位的十六进制数除了最高位是1外其他的位只能是0,否则就溢出。所以实际上能表达的只有8位十六进制数。所以我们看到Intent里面关于Activity的FLAG都是8位十六进制数。

而且通过排列之后,我们发现每一个FLAG只在8位中其中一位有值,其他7位全是0。而且每一个有值的位上全是1、2、4、8。我们可以看出这个是2的升序次幂。

我们把上面的数值表换算成二进制并排序看一下

0x10000000  = 10000000000000000000000000000
0x08000000  = 01000000000000000000000000000
0x04000000  = 00100000000000000000000000000
0x02000000  = 00010000000000000000000000000
0x01000000  = 00001000000000000000000000000 
0x00800000  = 00000100000000000000000000000 
0x00400000  = 00000010000000000000000000000 
0x00200000  = 00000001000000000000000000000
0x00100000  = 00000000100000000000000000000
0x00080000  = 00000000010000000000000000000
0x00040000  = 00000000001000000000000000000
0X00020000  = 00000000000100000000000000000
0X00010000  = 00000000000010000000000000000
0X00008000  = 00000000000001000000000000000
0X00004000  = 00000000000000100000000000000
0x00002000  = 00000000000000010000000000000
0x00001000  = 00000000000000001000000000000
0x00000800  = 00000000000000000100000000000
0x00000400  = 00000000000000000010000000000
0x00000200  = 00000000000000000001000000000

可以看出每一个Flag值都在一个二进制数指定的位上,这个位是1则表示有这个Flag,这个位上为0则表示没有这个Flag。

为什么要这样做呢?

       1、首先,这样做可以用有限的标志位表达非常多样的状态组合,这在我们记录一件比较事物复杂多样的状态的时候,可以大量减少数据量。

比如我们想要表达某个状态同时拥有N个标志,那么我们只要把这N个标志按位或,就可以得到一个唯一值。Flag是29位二进制数,可以有29种标识。那么理论上可以表达这29种标志组合后的 2^29 = 536870912种状态。

      2、其次,这样非常有利于数据存储和传输

我们在传输某件事物的这29种Flag各自状态的时候,只需要传输这29种Flag的按位或值。接收方也只存储这一个值,在解读的时候如果要判断是否拥有这个Flag,只要将这个值和Flag按位与不等于0,就说明拥有这个Flag。

    总结:不得不感叹这样设计的精妙,29种标志的各自状态只需要1个值就可以表达,可以表达的值范围达到[0,536870912]。而且存储和解读都非常简单高效,有点类似于数据加密压缩了,效率反而提升了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

闽农qq:994955138

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值