pytorch-encoding安装踩坑记录

这篇博客记录了在非root环境下安装CUDA 10.1和9.2的过程,以及在安装PyTorch 1.4.0和PyTorch-Encoding时遇到的CUDA_HOME设置错误。通过修改.bashrc文件解决了编译问题。还探讨了在安装过程中因环境中的包名与文件夹名冲突导致的import错误,并提出了解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 安装非root的cuda10.1:(失败)

    sh cuda_10.1.105_418.39_linux.run
    

    提示如下错误:

    Log file not open.
    Segmentation fault (core dumped)
    

    可能是数组越界,按照网上的方法进行尝试解决:

    #设置core大小为无限      ulimit -c unlimited
    
    #设置文件大小为无限       ulimit unlimited
    

    仍然提示一样的错误!

  • 安装非root的cuda9.2(成功)

  • 建立conda环境:pytorch-encoding_python3.6

    • 安装pytorch 1.4.0 (成功)
    • 安装pytorch-encoding(失败 成功)
      • 失败原因:CUDA_HOME 设置错误,重新编写.bashrc 之后成功编译!
-- Building version 1.2.2b20200901
c++:  ['/home/yuanquan/PyTorch-Encoding/encoding/lib/cpu/syncbn_cpu.cpp', 
'/home/yuanquan/PyTorch Encoding/encoding/lib/cpu/encoding_cpu.cpp', 
'/home/yuanquan/PyTorch-Encoding/encoding/lib/cpu/rectify_cpu.cpp', 
'/home/yuanquan/PyTorch-Encoding/encoding/lib/cpu/roi_align_cpu.cpp', 
'/home/yuanquan/PyTorch-Encoding/encoding/lib/cpu/nms_cpu.cpp', 
'/home/yuanquan/PyTorch-Encoding/encoding/lib/cpu/operator.cpp']
cuda:  ['/home/yuanquan/PyTorch-Encoding/encoding/lib/gpu/operator.cpp', 
'/home/yuanquan/PyTorch-Encoding/encoding/lib/gpu/nms_kernel.cu', 
'/home/yuanquan/PyTorch-Encoding/encoding/lib/gpu/roi_align_kernel.cu', 
'/home/yuanquan/PyTorch-Encoding/encoding/lib/gpu/lib_ssd.cu', 
'/home/yuanquan/PyTorch-Encoding/encoding/lib/gpu/rectify_cuda.cu', 
'/home/yuanquan/PyTorch-Encoding/encoding/lib/gpu/encoding_kernel.cu',
'/home/yuanquan/PyTorch-Encoding/encoding/lib/gpu/activation_kernel.cu', 
'/home/yuanquan/PyTorch-Encoding/encoding/lib/gpu/syncbn_kernel.cu']
running install
running bdist_egg
running egg_info
writing torch_encoding.egg-info/PKG-INFO
writing dependency_links to torch_encoding.egg-info/dependency_links.txt
writing requirements to torch_encoding.egg-info/requires.txt
writing top-level names to torch_encoding.egg-info/top_level.txt
reading manifest file 'torch_encoding.egg-info/SOURCES.txt'
writing manifest file 'torch_encoding.egg-info/SOURCES.txt'
installing library code to build/bdist.linux-x86_64/egg
running install_lib
running build_py
copying encoding/version.py -> build/lib.linux-x86_64-3.6/encoding
running build_ext
building 'encoding.gpu' extension
gcc -pthread -B /home/yuanquan/anaconda3/envs/pytorch-encoding/compiler_compat 
-Wl,--sysroot=/ -Wsign-compare -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -fPIC -DWITH_CUDA -I/home/yuanquan/PyTorch-Encoding/encoding/lib/cpu 
-I/home/yuanquan/anaconda3/envs/pytorch-encoding/lib/python3.6/site-packages/torch/include 
-I/home/yuanquan/anaconda3/envs/pytorch-encoding/lib/python3.6/site-packages/torch/include/torch/csrc/api/include 
-I/home/yuanquan/anaconda3/envs/pytorch-encoding/lib/python3.6/site-packages/torch/include/TH 
-I/home/yuanquan/anaconda3/envs/pytorch-encoding/lib/python3.6/site-packages/torch/include/THC 
-I/home/yuanquan/PyTorch-Encoding/encoding/lib/gpu 
-I/home/yuanquan/anaconda3/envs/pytorch-encoding/lib/python3.6/site-packages/torch/include 
-I/home/yuanquan/anaconda3/envs/pytorch-encoding/lib/python3.6/site-packages/torch/include/torch/csrc/api/include 
-I/home/yuanquan/anaconda3
### 如何在Python中安装PyTorch-Encoding库 为了成功安装 `PyTorch-Encoding` 库,需按照特定步骤操作并注意环境配置。以下是详细的说明: #### 1. 创建合适的虚拟环境 创建一个新的 Conda 虚拟环境以确保兼容性和隔离性。推荐使用 Python 3.8 的版本,因为较新的 PyTorch 版本可能不支持低于此版本的 Python。 ```bash conda create -n torch1.4 python=3.8 source activate torch1.4 ``` 这一步骤有助于避免因不同项目的依赖冲突而导致的问题[^3]。 #### 2. 安装 PyTorch 和其他必要组件 根据需求选择 CUDA 工具包的版本。如果硬件支持 CUDA,则可以选择相应的 GPU 加速版本;否则可选用 CPU 版本。 对于 CUDA 10.1 支持的情况: ```bash conda install pytorch==1.4.0 torchvision==0.5.0 cudatoolkit=10.1 -c pytorch ``` 或者,如果您不需要 GPU 支持,可以直接安装仅适用于 CPU 的 PyTorch: ```bash pip install torch ``` 确认所选的 PyTorch 版本与项目中的模型和其他依赖项相匹配是非常重要的[^2]。 #### 3. 下载 PyTorch-Encoding 源码 克隆或下载 `PyTorch-Encoding` 的源代码仓库至本地计算机上。可以通过 Git 克隆命令完成这一过程: ```bash git clone https://github.com/junyanz/PyTorch-Encoding.git cd PyTorch-Encoding ``` #### 4. 构建和安装 PyTorch-Encoding 包 利用内置的构建工具来编译和安装该库作为标准 Python 包的一部分。执行以下命令即可实现这一点: ```bash python setup.py install ``` 上述指令会自动处理大部分内部模块初始化工作,并将其集成到当前激活的 Python 环境之中[^1]。 #### 5. 解决潜在导入错误 当遇到诸如 “cannot import name 'cpu' from partially initialized module 'encoding’” 这样的问题时,通常是因为循环导入引起的。解决方法之一是在受影响文件内调整导入顺序或将某些部分延迟加载直到真正需要用到它们的时候再引入。 --- ### 示例代码片段展示如何验证安装是否成功 下面提供了一段简单的测试程序用于检查 `PyTorch-Encoding` 是否被正确设置好: ```python import encoding print("Encoding version:", encoding.__version__) ``` 如果一切正常,这段脚本应该能够打印出已安装编码库的具体版本号而不会抛出任何异常信息。 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值