素数

素数就是质数,在大于1的自然数中,除了1和它本身以外,不能被任何数整除

 

唯一分解定理: 一个数要么其本身是质数,要么可以分解为几个质数之积。

 

对于一个正整数X(除1外)都有这样一个式子

(p是素因子,a是素因子的个数)

 

判断素数

  • 素数 朴素算法(复杂度O(n)):

    int flag=0
    for(int i=2;i<=n;i++){
        if(x%i) {
            flag=1;
            break;
        }
    }

     

  • 进阶版:复杂度(复杂的O(√n))

int flag=0
for(int i=2;i<=n;i++){
    if(x%i) {
        flag=1;
        break;
    }
}

素数筛法

  • 朴素算法:复杂度nlog(n)

    int prim[MAXN];
    bool flag[MAXN]
    for(int i=2;i<MAXN;i++){
        if(flag[i]==false){
            prim[++prim[0]]=i;
            for(int j=i+i;j<=MAXN;j+=i){
                flag[j]=true;
            }
        }
    }

     

  • 线性筛: 复杂度 O(n)

    vector prim;
    bool flag[MAXN]={false};
    for(int i=2;i<MAXN;i++){
        if(flag[i]==false) {
            prim.push_back(i);
        }
        for(int j=1;j<prim.size();j++){
            if(i*prim[j]>MAXN) break;
            flag[i*prim[j]]=true;
            if(i%prim[j]==0) break;
        }
    }

     

    if(i%prim[j]==0) break; 因为此时i和prim[j]说明i包括了prim[j]的所有质因子。若prime[j]在这个合数里只出现一次(i%prime[j]!=0),也就是prime[j]在这个合数里出现了不止一次。
    举个例子,当i=4时,prim[1]=2,prime[2]=3,内层循环首先筛掉了4*prim[1]=8,这时候4%2==0,应该跳出循环,如果不跳出循环的话,下一次会筛掉4*prime[2]=12,然而这样是没有必要的,因为12会在i=6时被筛掉。也正因为这个语句,欧拉筛素数不会有重复的情况。在线性复杂度内可以完成。

     

欧拉函数

某个数的欧拉函数即为小于它且和它互质的数的个数

例如φ(8)=4,因为1,3,5,7均和8互质。

1~8有:φ(1)=1, φ(2)=1, φ(3)=2, φ(4)=2, φ(5)=4, φ(6)=2, φ(7)=6, φ(8)=4

p1,p2...pn为x的所有质因数

例如x=12,12的质因数有P(2,3);12以内有1/2的数是2的倍数,1/3的数是3的倍数;(1-1/2)不是2的倍数,(1-1/3)不是3的倍数,(1-1/2)*(1-1/3)既不是2也不是3的倍数。故1-1/2)*(1-1/3)个数y,当y/12-->y/2*3时候化简,即与12互质

  • 用辗转相除法求两个数的最大公共质因数

    int gcd(int a,int b){
        return b==0 ? a: gcd(b,a%b); 
    }

     

    若返回值为1,则两个数互质

    • 欧拉函数 朴素算法 O(n)

      int oula(int n){
          int rea=n;
          for(int i=2;i<=n;i++){
              if( n%i==0 ){
                  rea=rea-rea/i;
                  do{
                      n/=i;
                  }
                  while(n%i==0);
              }
          }
          return rea;
      }
int oula_youhua(int n){
    int rea=n;
    for(int i=2;i*i<=n;i++){
        if(n%i==0){
            rea=rea-rea/i;
            do{
                n/=i;
            }while(n%i==0)
        }
    }
    if(n>1) rea=rea-rea/n;
    return rea;
}

 

  • 欧拉欧拉线性筛:复杂度O(n)

int prim[MAXN];
bool flag[MAXN]={false};
int  phi[MAXN];
for(int i=2;i<MAXN;i++){
    if(flag[i]==false) {
        prim[++prim[0]]=i;
        phi[i]=i-1;
    }
    for(int j=1;j<=prim[0];j++){
        if(i*prim[j]>MAXN) break;
        flag[i*prim[j]]=true;
        if(i%prim[j]==0) {
            phi[i*prim[j]]=phi[i]*prim[j];
            break;
        }
        else{
            phi[i*prim[j]] = phi[i]*phi[prim[j]];
        }
    }
}

 

gcd(i,n) =x gcd(i/x,n/x)=1 ;

oula(n/x)个gcd(i,n)=x的i gcd之和为x*oula(n/x)

x的所有因数的欧拉数和因数的乘积之和

gcd(x,n)=i (1<=i<=n)求gcd之和

对于一个gcd(x/i,n/i)=1,则x/i和n/i互质 。因为x,n的最大公约数为i,同除i后,两者最大公约数为1了。此时n/i与互质的x/i,就是为除i之前,与n最大公约数为i的 用oula(n/i) 就可以求得满足的x的个数 oula(n/i)*i即为gcd之和

 

 

习题 POJ2480

Longge is good at mathematics and he likes to think about hard mathematical problems which will be solved by some graceful algorithms. Now a problem comes: Given an integer N(1 < N < 2^31),you are to calculate ∑gcd(i, N) 1<=i <=N. 

"Oh, I know, I know!" Longge shouts! But do you know? Please solve it. 

Input

Input contain several test case. 
A number N per line. 

Output

For each N, output ,∑gcd(i, N) 1<=i <=N, a line

Sample Input

2
6

Sample Output

3
15

题意:输入n,计算x属于1-n ,gcd(x,n)之和。
题解:gcd(X,n)==i. 即gcd(x/i,n/i)*i之和
首先枚举i,i必须是n的因素.gcd(x/i,n/i)==1,这些x/i与n/i互质,即求phi(n/i),即为满足条件的x的个数.phi(n/i)*i,即为这些gcd(x,n)==i之和.
c++代码
#include<iostream>
using namespace std;
typedef long long ll;
const  ll N=100000;
ll phi[N];
ll prim[N];
bool flag[N]={false};
int getPhi(int x) {
    int rea = x;
    for (ll i = 2; i * i <= x; i ++) {
        if(x % i == 0) {
            rea = rea - rea / i;
            do{
                x /= i;
            }while(x % i == 0);
        }
    }
    if(x > 1) 
        rea = rea - rea / x;
    return rea;
}
int main(){

    int n;
    while(cin>>n){
        ll ans=0;
        for(ll i=1;i*i<=n;i++){
            if(n%i==0) {
                ans+=i*getPhi(n/i);
                if(i*i!=n){
                    ans+=(n/i)*getPhi(i);
                }
            }
        }
        cout<<ans<<endl;
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/jjl0229/p/11298924.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值