hive性能优化

1. 概述

首先,我们来看看Hadoop的计算框架特性,在此特性下会衍生哪些问题?

  • 数据量大不是问题,数据倾斜是个问题。
  • jobs数比较多的作业运行效率相对比较低,比如即使有几百行的表,如果多次关联多次汇总,产生十几个jobs,耗时很长。原因是map reduce作业初始化的时间是比较长的。
  • sum,count,max,min等UDAF,不怕数据倾斜问题,hadoop在map端的汇总合并优化,使数据倾斜不成问题。
  • count(distinct ),在数据量大的情况下,效率较低,如果是多count(distinct )效率更低,因为count(distinct)是按group by 字段分组,按distinct字段排序,一般这种分布方式是很倾斜的。举个例子:比如男uv,女uv,像淘宝一天30亿的pv,如果按性别分组,分配2个reduce,每个reduce处理15亿数据。

面对这些问题,我们能有哪些有效的优化手段呢?下面列出一些在工作有效可行的优化手段:

  • 好的模型设计事半功倍。
  • 解决数据倾斜问题。
  • 减少job数。
  • 设置合理的map reduce的task数,能有效提升性能。(比如,10w+级别的计算,用160个reduce,那是相当的浪费,1个足够)。
  • 了解数据分布,自己动手解决数据倾斜问题是个不错的选择。set hive.groupby.skewindata=true;这是通用的算法优化,但算法优化有时不能适应特定业务背景,开发人员了解业务,了解数据,可以通过业务逻辑精确有效的解决数据倾斜问题。
  • 数据量较大的情况下,慎用count(distinct),count(distinct)容易产生倾斜问题。
  • 对小文件进行合并,是行至有效的提高调度效率的方法,假如所有的作业设置合理的文件数,对云梯的整体调度效率也会产生积极的正向影响。
  • 优化时把握整体,单个作业最优不如整体最优。

而接下来,我们心中应该会有一些疑问,影响性能的根源是什么?

2. 影响性能的根源

  • hive性能优化时,把HiveQL当做M/R程序来读,即从M/R的运行角度来考虑优化性能,从更底层思考如何优化运算性能,而不仅仅局限于逻辑代码的替换层面。

  • RAC(Real Application Cluster)真正应用集群就像一辆机动灵活的小货车,响应快;Hadoop就像吞吐量巨大的轮船,启动开销大,如果每次只做小数量的输入输出,利用率将会很低。所以用好Hadoop的首要任务是增大每次任务所搭载的数据量。

  • Hadoop的核心能力是parition和sort,因而这也是优化的根本。

  • 观察Hadoop处理数据的过程,有几个显著的特征:

    • 数据的大规模并不是负载重点,造成运行压力过大是因为运行数据的倾斜。

    • jobs数比较多的作业运行效率相对比较低,比如即使有几百行的表,如果多次关联对此汇总,产生几十个jobs,将会需要30分钟以上的时间且大部分时间被用于作业分配,初始化和数据输出。M/R作业初始化的时间是比较耗时间资源的一个部分。

    • 在使用SUM,COUNT,MAX,MIN等UDAF函数时,不怕数据倾斜问题,Hadoop在Map端的汇总合并优化过,使数据倾斜不成问题。

    • COUNT(DISTINCT)在数据量大的情况下,效率较低,如果多COUNT(DISTINCT)效率更低,因为COUNT(DISTINCT)是按GROUP BY字段分组,按DISTINCT字段排序,一般这种分布式方式是很倾斜的;比如:男UV,女UV,淘宝一天30亿的PV,如果按性别分组,分配2个reduce,每个reduce处理15亿数据。

    • 数据倾斜是导致效率大幅降低的主要原因,可以采用多一次 Map/Reduce 的方法, 避免倾斜。

  • 最后得出的结论是:避实就虚,用 job 数的增加,输入量的增加,占用更多存储空间,充分利用空闲 CPU 等各种方法,分解数据倾斜造成的负担。

3. 配置角度优化

  • 我们知道了性能底下的根源,同样,我们也可以从Hive的配置去优化。Hive系统内部已针对不同的查询与设定了优化方案,哟用户可以通过调整配置进行控制,以下举例介绍部分优化的策略以及优化控制选项。

3.1 列裁剪

  • Hive在读数据的时候,可以只读取查询汇总所需要用到的列,而忽略其他列。例如,若有以下查询:
selecd a,b from q where e < 10;
  • 在实施此项查询中,Q 表有 5 列(a,b,c,d,e),Hive 只读取查询逻辑中真实需要 的 3 列 a、b、e,而忽略列 c,d;这样做节省了读取开销,中间表存储开销和数据整合开销。

  • 裁剪所对应的参数项为:hive.optimize.cp=true(默认值为真)

3.2 分区裁剪

  • 可以在查询的过程中减少不必要的分区。例如,若有以下查询:
select * from (select a1,count(1) from t group by a1) subq where subq.prtn=100;#(多余分区)
select * from t1 join (select * from t2) subq on (t1.a1=subq.a2) where subq.prth=100;
  • 查询语句若将“subq.prtn=100”条件放入子查询中更为高效,可以减少读入的分区 数目。 Hive 自动执行这种裁剪优化。
  • 分区参数为:hive.optimize.pruner=true(默认值为真)

3.3 join操作

  • 在编写带有join操作的代码语句时,应该将条目少的表/子查询放在join操作符的左边,因为在reduce阶段,位于join操作符左边的表的内容会被加载进内存,载入条目较少的表可以有效减少OOM(out of memory)即内存溢出。所以对于同一个key来书,对应的value值小的放前,大的放后,这是“小表放前”原则。若一条语句汇总有多个join,依据join的条件相同与否,有不同的处理方法。

3.3.1 join原则

  • 在使用写有 Join 操作的查询语句时有一条原则:应该将条目少的表/子查询放在 Join 操作符的左边。原因是在 Join 操作的 Reduce 阶段,位于 Join 操作符左边的表的内容会被加载进内存,将条目少的表放在左边,可以有效减少发生 OOM 错误的几率。对于一条语句中有多个 Join 的情况,如果 Join 的条件相同,比如查询:
insert overwrite table pv_users
select pv.pageid,u.age from page_view p
join user u on (pv.userid = u.userid)
join newuser x on (u.userid = x.userid );
  • 如果join的key相同,不管有多少个表,都会合并为一个MapReduce
  • 一个MapReduce任务,而不是n个
  • 在做outer join 的时候也一样
    如果join的条件不相同,比如:
INSERT OVERWRITE TABLE pv_users 
   SELECT pv.pageid, u.age FROM page_view p 
   JOIN user u ON (pv.userid = u.userid) 
   JOIN newuser x on (u.age = x.age);  

Map-Reduce 的任务数目和 Join 操作的数目是对应的,上述查询和以下查询是等价的:

INSERT OVERWRITE TABLE tmptable 
   SELECT * FROM page_view p JOIN user u 
   ON (pv.userid = u.userid);
 INSERT OVERWRITE TABLE pv_users 
   SELECT x.pageid, x.age FROM tmptable x 
   JOIN newuser y ON (x.age = y.age);  

3.4 map join操作

  • join操作在map阶段完成,不再需要reduce,前提条件是需要的数据在map的过程中可以访问到。比如查询:
INSERT OVERWRITE TABLE pv_users 
   SELECT /*+ MAPJOIN(pv) */ pv.pageid, u.age 
   FROM page_view pv 
     JOIN user u ON (pv.userid = u.userid);    

可以在 Map 阶段完成 Join,如图所示:
hive-8

  • 相关的参数为:

    • hive.join.emit.interval = 1000

    • hive.mapjoin.size.key = 10000

    • hive.mapjoin.cache.numrows = 10000

3.5 group by操作

  • 进行GROUP BY操作时需要注意一下几点:

    • Map端部分聚合

      • 事实上并不是所有的聚合操作都需要在reduce部分进行,很多聚合操作都可以先在Map端进行部分聚合,然后reduce端得出最终结果。

      • 这里需要修改的参数为:

      • hive.map.aggr=true(用于设定是否在 map 端进行聚合,默认值为真)

      • hive.groupby.mapaggr.checkinterval=100000(用于设定 map 端进行聚合操作的条目数)

    • 有数据倾斜时进行负载均衡

      • 此处需要设定 hive.groupby.skewindata,当选项设定为 true 是,生成的查询计划有两 个 MapReduce 任务。在第一个 MapReduce 中,map 的输出结果集合会随机分布到 reduce 中, 每个 reduce 做部分聚合操作,并输出结果。这样处理的结果是,相同的 Group By Key 有可 能分发到不同的 reduce 中,从而达到负载均衡的目的;第二个 MapReduce 任务再根据预处 理的数据结果按照 Group By Key 分布到 reduce 中(这个过程可以保证相同的 Group By Key 分布到同一个 reduce 中),最后完成最终的聚合操作。

3.6 合并小文件

  • 我们知道文件数目小,容易在文件存储端造成瓶颈,给 HDFS 带来压力,影响处理效率。对此,可以通过合并Map和Reduce的结果文件来消除这样的影响。

  • 用于设置合并属性的参数有:

    • 是否合并Map输出文件:hive.merge.mapfiles=true(默认值为真)

    • 是否合并Reduce 端输出文件:hive.merge.mapredfiles=false(默认值为假)

    • 合并文件的大小:hive.merge.size.per.task=256*1000*1000(默认值为 256000000)

4. 程序角度优化

4.1 熟练使用SQL提高查询

  • 熟练地使用 SQL,能写出高效率的查询语句。

  • 场景:有一张 user 表,为卖家每天收到表,user_id,ds(日期)为 key,属性有主营类目,指标有交易金额,交易笔数。每天要取前10天的总收入,总笔数,和最近一天的主营类目。   

  • 解决方法 1

    • 如下所示:常用方法
INSERT OVERWRITE TABLE t1 
SELECT user_id,substr(MAX(CONCAT(ds,cat),9) AS main_cat) FROM users 
WHERE ds=20120329 // 20120329 为日期列的值,实际代码中可以用函数表示出当天日期 GROUP BY user_id; 

INSERT OVERWRITE TABLE t2 
SELECT user_id,sum(qty) AS qty,SUM(amt) AS amt FROM users 
WHERE ds BETWEEN 20120301 AND 20120329 
GROUP BY user_id 

SELECT t1.user_id,t1.main_cat,t2.qty,t2.amt FROM t1 
JOIN t2 ON t1.user_id=t2.user_id
  • 下面给出方法1的思路,实现步骤如下:

    • 第一步:利用分析函数,取每个 user_id 最近一天的主营类目,存入临时表 t1。
    • 第二步:汇总 10 天的总交易金额,交易笔数,存入临时表 t2。
    • 第三步:关联 t1,t2,得到最终的结果。
  • 解决方法 2

    • 如下所示:优化方法 

SELECT user_id,substr(MAX(CONCAT(ds,cat)),9) AS main_cat,SUM(qty),SUM(amt) FROM users 
WHERE ds BETWEEN 20120301 AND 20120329 
GROUP BY user_id
  • 在工作中我们总结出:方案 2 的开销等于方案 1 的第二步的开销,性能提升,由原有的 25 分钟完成,缩短为 10 分钟以内完成。节省了两个临时表的读写是一个关键原因,这种方式也适用于 Oracle 中的数据查找工作。

  • SQL 具有普适性,很多 SQL 通用的优化方案在 Hadoop 分布式计算方式中也可以达到效果。

4.2 无效ID在关联时的数据倾斜问题

  • 问题:日志中常会出现信息丢失,比如每日约为 20 亿的全网日志,其中的 user_id 为主 键,在日志收集过程中会丢失,出现主键为 null 的情况,如果取其中的 user_id 和 bmw_users 关联,就会碰到数据倾斜的问题。原因是 Hive 中,主键为 null 值的项会被当做相同的 Key 而分配进同一个计算 Map。

  • 解决方法 1:user_id 为空的不参与关联,子查询过滤 null

SELECT * FROM log a 
JOIN bmw_users b ON a.user_id IS NOT NULL AND a.user_id=b.user_id 
UNION All SELECT * FROM log a WHERE a.user_id IS NULL
  • 解决方法 2 如下所示:函数过滤 null
SELECT * FROM log a LEFT OUTER 
JOIN bmw_users b ON 
CASE WHEN a.user_id IS NULL THEN CONCAT(‘dp_hive’,RAND()) ELSE a.user_id END =b.user_id;
  • 调优结果:原先由于数据倾斜导致运行时长超过 1 小时,解决方法 1 运行每日平均时长 25 分钟,解决方法 2 运行的每日平均时长在 20 分钟左右。优化效果很明显。
  • 我们在工作中总结出:解决方法2比解决方法1效果更好,不但IO少了,而且作业数也少了。解决方法1中log读取两次,job 数为2。解决方法2中 job 数是1。这个优化适合无效 id(比如-99、 ‘’,null 等)产生的倾斜问题。把空值的 key 变成一个字符串加上随机数,就能把倾斜的 数据分到不同的Reduce上,从而解决数据倾斜问题。因为空值不参与关联,即使分到不同 的 Reduce 上,也不会影响最终的结果。附上 Hadoop 通用关联的实现方法是:关联通过二次排序实现的,关联的列为 partion key,关联的列和表的 tag 组成排序的 group key,根据 pariton key分配Reduce。同一Reduce内根据group key排序。

4.3 不同数据类型关联产生的倾斜问题

  • 问题:不同数据类型 id 的关联会产生数据倾斜问题。

  • 一张表 s8 的日志,每个商品一条记录,要和商品表关联。但关联却碰到倾斜的问题。 s8 的日志中有 32 为字符串商品 id,也有数值商品 id,日志中类型是 string 的,但商品中的 数值 id 是 bigint 的。猜想问题的原因是把 s8 的商品 id 转成数值 id 做 hash 来分配 Reduce, 所以字符串 id 的 s8 日志,都到一个 Reduce 上了,解决的方法验证了这个猜测。

  • 解决方法:把数据类型转换成字符串类型

SELECT * FROM s8_log a LEFT OUTER 
JOIN r_auction_auctions b ON a.auction_id=CASE(b.auction_id AS STRING) 
  • 调优结果显示:数据表处理由 1 小时 30 分钟经代码调整后可以在 20 分钟内完成。

4.4 利用Hive对union all优化的特性

  • 多表 union all 会优化成一个 job。

    • 问题:比如推广效果表要和商品表关联,效果表中的 auction_id 列既有 32 为字符串商 品 id,也有数字 id,和商品表关联得到商品的信息。
  • 解决方法:Hive SQL 性能会比较好

SELECT * FROM effect a 
JOIN 
(SELECT auction_id AS auction_id FROM auctions 
UNION All 
SELECT auction_string_id AS auction_id FROM auctions) b 
ON a.auction_id=b.auction_id 
  • 比分别过滤数字 id,字符串 id 然后分别和商品表关联性能要好。

    • 这样写的好处:1 个 MapReduce 作业,商品表只读一次,推广效果表只读取一次。把 这个 SQL 换成 Map/Reduce 代码的话,Map 的时候,把 a 表的记录打上标签 a,商品表记录 每读取一条,打上标签 b,变成两个

4.5 解决Hive对union all优化的短板

  • Hive 对 union all 的优化的特性:对 union all 优化只局限于非嵌套查询。

    • 消灭子查询内的 group by
  • 示例 1:子查询内有 group by


SELECT * FROM 
(SELECT * FROM t1 GROUP BY c1,c2,c3 UNION ALL SELECT * FROM t2 GROUP BY c1,c2,c3)t3 
GROUP BY c1,c2,c3 
  • 从业务逻辑上说,子查询内的 GROUP BY 怎么都看显得多余(功能上的多余,除非有 COUNT(DISTINCT)),如果不是因为 Hive Bug 或者性能上的考量(曾经出现如果不执行子查询 GROUP BY,数据得不到正确的结果的 Hive Bug)。所以这个 Hive 按经验转换成如下所示:

SELECT * FROM (SELECT * FROM t1 UNION ALL SELECT * FROM t2)t3 GROUP BY c1,c2,c3
  • 调优结果:经过测试,并未出现 union all 的 Hive Bug,数据是一致的。MapReduce 的 作业数由 3 减少到 1。

  • t1 相当于一个目录,t2 相当于一个目录,对 Map/Reduce 程序来说,t1,t2 可以作为 Map/Reduce 作业的 mutli inputs。这可以通过一个 Map/Reduce 来解决这个问题。Hadoop 的 计算框架,不怕数据多,就怕作业数多。

  • 但如果换成是其他计算平台如 Oracle,那就不一定了,因为把大的输入拆成两个输入, 分别排序汇总后 merge(假如两个子排序是并行的话),是有可能性能更优的(比如希尔排 序比冒泡排序的性能更优)。


  • 消灭子查询内的 COUNT(DISTINCT),MAX,MIN。
SELECT * FROM 
(SELECT * FROM t1 
UNION ALL SELECT c1,c2,c3 COUNT(DISTINCT c4) FROM t2 GROUP BY c1,c2,c3) t3 
GROUP BY c1,c2,c3; 
  • 由于子查询里头有 COUNT(DISTINCT)操作,直接去 GROUP BY 将达不到业务目标。这时采用 临时表消灭 COUNT(DISTINCT)作业不但能解决倾斜问题,还能有效减少 jobs。
INSERT t4 SELECT c1,c2,c3,c4 FROM t2 GROUP BY c1,c2,c3; 
SELECT c1,c2,c3,SUM(income),SUM(uv) FROM 
(SELECT c1,c2,c3,income,0 AS uv FROM t1 
UNION ALL 
SELECT c1,c2,c3,0 AS income,1 AS uv FROM t2) t3 
GROUP BY c1,c2,c3;
  • job 数是 2,减少一半,而且两次 Map/Reduce 比 COUNT(DISTINCT)效率更高。

    • 调优结果:千万级别的类目表,member 表,与 10 亿级得商品表关联。原先 1963s 的任务经过调整,1152s 即完成。
  • 消灭子查询内的 JOIN

SELECT * FROM 
(SELECT * FROM t1 UNION ALL SELECT * FROM t4 UNION ALL SELECT * FROM t2 JOIN t3 ON t2.id=t3.id) x 
GROUP BY c1,c2; 
  • 上面代码运行会有 5 个 jobs。加入先 JOIN 生存临时表的话 t5,然后 UNION ALL,会变成 2 个 jobs。
INSERT OVERWRITE TABLE t5 
SELECT * FROM t2 JOIN t3 ON t2.id=t3.id; 
SELECT * FROM (t1 UNION ALL t4 UNION ALL t5);
  • 调优结果显示:针对千万级别的广告位表,由原先 5 个 Job 共 15 分钟,分解为 2 个 job 一个 8-10 分钟,一个3分钟。

4.6 group by替代count(DISTINCT)达到优化效果

  • 计算 uv 的时候,经常会用到 COUNT(DISTINCT),但在数据比较倾斜的时候 COUNT(DISTINCT) 会比较慢。这时可以尝试用 GROUP BY 改写代码计算 uv。

  • 原有代码

INSERT OVERWRITE TABLE s_dw_tanx_adzone_uv PARTITION (ds=20120329) 
SELECT 20120329 AS thedate,adzoneid,COUNT(DISTINCT acookie) AS uv 
FROM s_ods_log_tanx_pv t WHERE t.ds=20120329 GROUP BY adzoneid
  • 关于COUNT(DISTINCT)的数据倾斜问题不能一概而论,要依情况而定,下面是我测试的一组数据:

  • 测试数据:169857条


#统计每日IP 
CREATE TABLE ip_2014_12_29 AS SELECT COUNT(DISTINCT ip) AS IP 
FROM logdfs WHERE logdate='2014_12_29'; 
耗时:24.805 seconds 
#统计每日IP(改造) 
CREATE TABLE ip_2014_12_29 AS SELECT COUNT(1) AS IP 
FROM (SELECT DISTINCT ip from logdfs WHERE logdate='2014_12_29') tmp; 
耗时:46.833 seconds
  • 测试结果表名:明显改造后的语句比之前耗时,这是因为改造后的语句有2个SELECT,多了一个job,这样在数据量小的时候,数据不会存在倾斜问题。

5. 优化总结

  • 优化时,把hive sql当做mapreduce程序来读,会有意想不到的惊喜。理解hadoop的核心能力,是hive优化的根本。这是这一年来,项目组所有成员宝贵的经验总结。

    • 长期观察hadoop处理数据的过程,有几个显著的特征:

      • 不怕数据多,就怕数据倾斜。

      • 对jobs数比较多的作业运行效率相对比较低,比如即使有几百行的表,如果多次关联多次汇总,产生十几个jobs,没半小时是跑不完的。map reduce作业初始化的时间是比较长的。

      • 对sum,count来说,不存在数据倾斜问题。

      • 对count(distinct ),效率较低,数据量一多,准出问题,如果是多count(distinct )效率更低。

    • 优化可以从几个方面着手:

      • 好的模型设计事半功倍。

      • 解决数据倾斜问题。

      • 减少job数。

      • 设置合理的map reduce的task数,能有效提升性能。(比如,10w+级别的计算,用160个reduce,那是相当的浪费,1个足够)。

      • 自己动手写sql解决数据倾斜问题是个不错的选择。set hive.groupby.skewindata=true;这是通用的算法优化,但算法优化总是漠视业务,习惯性提供通用的解决方法。 Etl开发人员更了解业务,更了解数据,所以通过业务逻辑解决倾斜的方法往往更精确,更有效。

      • 对count(distinct)采取漠视的方法,尤其数据大的时候很容易产生倾斜问题,不抱侥幸心理。自己动手,丰衣足食。

      • 对小文件进行合并,是行至有效的提高调度效率的方法,假如我们的作业设置合理的文件数,对云梯的整体调度效率也会产生积极的影响。

  • 优化时把握整体,单个作业最优不如整体最优。

6. 优化的常用手段

  • 主要由三个属性来决定:

    • hive.exec.reducers.bytes.per.reducer #这个参数控制一个job会有多少个reducer来处理,依据的是输入文件的总大小。默认1GB。

    • hive.exec.reducers.max #这个参数控制最大的reducer的数量, 如果 input / bytes per reduce > max 则会启动这个参数所指定的reduce个数。 这个并不会影响mapre.reduce.tasks参数的设置。默认的max是999。

    • mapred.reduce.tasks #这个参数如果指定了,hive就不会用它的estimation函数来自动计算reduce的个数,而是用这个参数来启动reducer。默认是-1。

6.1 参数设置的影响

  • 如果reduce太少:如果数据量很大,会导致这个reduce异常的慢,从而导致这个任务不能结束,也有可能会OOM 2、如果reduce太多: 产生的小文件太多,合并起来代价太高,namenode的内存占用也会增大。如果我们不指定mapred.reduce.tasks, hive会自动计算需要多少个reducer。

6.2 常用的一些hive参数设置

  • set mapreduce.job.queuename=queuename;
    作业提交到的队列

  • set hive.exec.dynamic.partition=true;
    默认值:false
    是否开启动态分区功能,默认false关闭。
    使用动态分区时候,该参数必须设置成true;

  • set hive.exec.dynamic.partition.mode=nonstrict;
    默认值:strict
    动态分区的模式,默认strict,表示必须指定至少一个分区为静态分区,nonstrict模式表示允许所有的分区字段都可以使用动态分区。
    一般需要设置为nonstrict

  • set hive.exec.max.dynamic.partitions.pernode=1000;
    默认值:100
    在每个执行MR的节点上,最大可以创建多少个动态分区。
    该参数需要根据实际的数据来设定。
    比如:源数据中包含了一年的数据,即day字段有365个值,那么该参数就需要设置成大于365,如果使用默认值100,则会报错。

  • set hive.exec.max.dynamic.partitions=1000;
    默认值:1000
    在所有执行MR的节点上,最大一共可以创建多少个动态分区。
    同上参数解释。

  • 文件压缩

    • set mapred.output.compress=true;
    • set hive.exec.compress.output=true;
    • set mapred.output.compression.codec=com.hadoop.compression.lzo.LzopCodec;
  • 合并小文件

    • set hive.merge.mapfiles = true;合并map输出
    • set hive.merge.mapredfiles= true;合并reduce输出
    • set hive.merge.size.per.task=134217728;合并文件的大小
    • set hive.mergejob.maponly=true;如果支持CombineHiveInputFormat则生成只有Map的任务执行merge
    • set hive.merge.smallfiles.avgsize=150000000;文件的平均大小小于该值时,会启动一个MR任务执行merge。
  • 减少map数目

    • set mapred.max.split.size=134217728;
    • set mapred.min.split.size
    • set mapred.min.split.size.per.node=100000000;
    • set mapred.min.split.size.per.rack = 100000000;
    • set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;
  • set hive.hadoop.supports.splittable.combineinputformat=true;
    是否支持可切分的

  • set hive.groupby.skewindata=true;
    数据倾斜时负载均衡,当选项设定为true,生成的查询计划会有两个MRJob。第一个MRJob 中,Map的输出结果集合会随机分布到Reduce中,每个Reduce做部分聚合操作,并输出结果,这样处理的结果是相同的GroupBy Key有可能被分发到不同的Reduce中,从而达到负载均衡的目的;第二个MRJob再根据预处理的数据结果按照GroupBy Key分布到Reduce中(这个过程可以保证相同的GroupBy Key被分布到同一个Reduce中),最后完成最终的聚合操作。

  • set hive.map.aggr=true;
    在map中会做部分聚集操作,效率更高但需要更多的内存。

Hive性能优化文章链接

阅读更多
个人分类: hive
上一篇Hive的数据压缩
下一篇hive常见问题(持续更新。。。)
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭