source:
题意:求[0...b]中10进制下各位数之和小于f(a)的个数,F(a) = A n * 2n-1 + An-1 * 2 n-2 + ... + A 2 * 2 + A1 * 1
思路:数位dp,关于思想不必多提,见HDU 2089 不要62【数位dp】,主要注意memset优化:通过优化算法,可以使得对dp数组的初始化不必对每个不同的F(a)都重新算一遍,这样就可以避免出现TLE的错误,比如此题,如果dp数组记录的是dp[pos][sum],sum是目前为止的和,那么该值是与输入F(a)有关的,故每一组新的a都必须对dp数组清零,这样在时间上是要TLE的,当然还有另外一种想法那便是对不同的F(a)都将状态记忆化下来,这样同样不是好办法,因为会爆空间!于是最简单的方式便是将原来做加法的操作变成做减法的操作,这样就与F(a)的值无关了!
代码如下:
#include<stdio.h>
#include<string.h>
using namespace std;
int arr[11];
long long dp[11][4605];
long long calfa(int a)
{
int x=1;
long long ans=0;
while(a>0)
{
ans+=x*(a%10);
a=a/10;
x*=2;
}
return ans;
}
long long dfs(int pos,long long sta,int limit)
{
if(pos==-1) return 1;
if(!limit && dp[pos][sta]!=-1) return dp[pos][sta];
int up=limit?arr[pos]:9;
long long ans=0,x;
for(int i=0;i<=up;i++)
{
x=i;
for(int j=0;j<pos;j++) x*=2;
if(sta<x) break;
ans+=dfs(pos-1,sta-x,limit && i==arr[pos]);
}
if(!limit) dp[pos][sta]=ans;
return ans;
}
long long f(int x,long long fa)
{
int i=0;
while(x>0)
{
arr[i++]=x%10;
x=x/10;
}
return dfs(i-1,fa,1);
}
int main()
{
int T,a,b;
scanf("%d",&T);
memset(dp,-1,sizeof(dp));
for(int t=1;t<=T;t++)
{
scanf("%d%d",&a,&b);
printf("Case #%d: %lld\n",t,f(b,calfa(a)));
}
}