自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(12)
  • 收藏
  • 关注

原创 语音学习Task6-语音识别基础拓展

一、语音识别主要任务语音识别全称为“自动语音识别”,Automatic Speech Recognition (ASR), 一般是指将语音序列转换成文本序列。语音识别最终是统计优化问题,给定输入序列O={O1,…,On},寻找最可能的词序列W={W1,…,Wm},即寻找使得概率P(W|O)最大的词序列。用贝叶斯公式表示为:其中P(O|W) 叫做声学模型,描述的是给定词W时声学观察为O的概率;P(W)叫做语言模型,负责计算某个词序列的概率;P(O)是观察序列的概率,是固定的,是固定的,所以只看分母部分即

2021-04-22 14:57:41 448

原创 语音学习Task5-模型改进与优化

一、模型评估指标1.欠拟合与过拟合​ 过拟合是指模型对于训练数据拟合呈过当的情况,反映到评估指标上,就是模型在训练集上的表现很好,但在测试集和新数据上的表现较差。欠拟合指的是模型在训练和预测时表现都不好的情况。2.泛化误差当模型在未知数据(测试集或者袋外数据)上表现糟糕时,我们说模型的泛化程度不够,泛化误差大,模型的效果不好。泛化误差受到模型的结构(复杂度)影响。3.偏差与方差偏差指的是由所有采样得到的大小为m的训练数据集训练出的所有模型的输出的平均值和真实模型输出之间的偏差。方差

2021-04-21 22:56:46 159

原创 语音学习Task4-搭建并训练深度学习模型

一、深度学习模型深度学习模型是深度学习的核心,它使得计算机能够从数据中归纳总结出相应的规律并用于更进一步的应用。当前的深度学习模型基本都是基于反向传播算法。计算机视觉领域一般使用CNN等模型。自然语言处理领域一般使用RNN、LSTM、Transformer等模型。二、深度学习框架常用的深度学习框架有:PytorchTensorflowKerasPaddlePaddle三、模型搭建本次任务中使用Tensorflow的keras模块快速搭建CNN模型。1.CNN模型主要组件介绍

2021-04-19 22:33:48 524

原创 语音学习Task3-数据特征提取

一、MFCC特征提取知识介绍1.过零率 (Zero Crossing Rate)过零率(zero crossing rate)是一个信号符号变化的比率,即,在每帧中,语音信号从正变为负或从负变为正的次数。 这个特征已在语音识别和音乐信息检索领域得到广泛使用,通常对类似金属、摇滚等高冲击性的声音的具有更高的价值。 一般情况下,过零率越大,频率近似越高。可以通过librosa计算过零点个数zero_crossings = librosa.zero_crossings()2.频谱质心 (Sp

2021-04-17 23:26:32 761

原创 语音学习Task2-理解赛题数据

一、赛题介绍本次新人赛是Datawhale与天池联合发起的零基础入门系列赛事第八场 —— 零基础入门语音识别-食物声音识别挑战赛。本次比赛的数据集来自Kaggle的“Eating Sound Collection”(可商用), 数据集中包含20种不同食物的咀嚼声音,赛题任务是给这些声音数据建模,准确分类。二、了解声音声音以波的形式传播,即声波(Sound Wave)。所有声波都可以分解为基本波并可以通过傅里叶变换进行分析。我们可以用频率(Frequency)、 幅度(Magnitude)、相

2021-04-15 23:17:01 224

原创 语音学习Task1-理解CNN Baseline

一、学习赛题介绍本次新人赛是Datawhale与天池联合发起的0基础入门系列赛事 —— 零基础入门语音识别之食物声音识别。赛题以语音识别为背景,要求选手使用给定的音频数据集进行建模,并完成食物声音识别任务。数据集来自Kaggle的“Eating Sound Collection”(可商用),数据集中包含20种不同食物的咀嚼声音,赛题任务是给这些声音数据建模,准确分类。二、运行环境本次学习我使用的是天池实验室关联的DSW平台。进入比赛页面在导航栏找到使用天池打比赛一栏即可。页面中会详细介绍DSW平

2021-04-13 23:11:55 490

原创 6.迭代器与生成器

一.可迭代对象在介绍迭代器与生成器之前,我们首先来介绍一下可迭代对象。可迭代对象,顾名思义,就是可以“迭代”的对象。所谓迭代,就是一个 通过for循环遍历出对象中所有元素 的过程。那么可迭代对象,便是可以实现这个过程的对象了。在Python中,很多对象都是可迭代的,比如列表(list)、字典(dict)、元组(tuple)、集合(set)、字符串(str)、字节(bytes)等等,并且这些...

2020-01-19 14:17:38 173

原创 5.元类编程

一.两种魔法方法1.__getattr__方法在类中调用属性时查找不到所要调用的属性时,执行该方法。from datetime import dateclass User: def __init__(self, name, birthday): self.name = name self.birthday = birthday def ...

2020-01-13 10:40:49 185

原创 4.代码调试和性能分析

一.代码调试1.print()函数调试

2020-01-12 16:51:29 379

原创 3.Python中的垃圾回收机制

一.引用计数机制1.引用计数Python利用“引用计数”这一概念,对内存中的对象保持追踪。调用sys.getrefcount()函数可以查看对象的引用计数,而由于调用函数时传入了对象,因此调用该函数本身会使对象的引用计数+1。Python中一切皆对象,其中的一切变量,本质上都是对象的一个指针。在Python中,引用计数机制指的是当某一个对象的引用计数(指针数)为0的时候,说明这个对象永远不...

2020-01-12 16:50:11 176

原创 2.类与对象深度问题与解决技巧

一.如何派生内置不可变类型并修改其实例化行为问题:我们想自定义一种新类型的元组,对于传入的可迭代对象,我们只保留其中int类型且值大于0的元素,例如:IntTuple([2,-2,'jr',['x','y'],4]) => (2,4)请用继承内置tuple的方法实现IntTupletuple生成元组的方法是new方法,所以重写__new__(cls, *args, **kwargs...

2020-01-01 22:51:25 244

原创 1.Python深入类与对象

一. 鸭子类型和多态鸭子类型动态语言调用实例方法时不检查类型,只要方法存在,传入的参数正确,即可调用。这就是动态语言的“鸭子类型”,它不要求严格的继承体系,只需满足“像鸭子”,就可以被当作鸭子看待。例如:a = [1,2]b = [3,4]c = [5,6]d = (7,8)e = {9,10}#list.extend(self,iterable) 只要是itera...

2020-01-01 13:23:21 171

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除