Privacy-preserving Serverless Computing using Federated Learning for Smart Grids论文总结
- Abstract
- I. INTRODUCTION
- II. RELATED WORK
- III. RESEARCH METHODOLOGY
- IV. EXPERIMENTAL EVALUATION
- V. CONCLUSION
Federated Learning for Smart Grids论文总结)
Abstract
智能电网是一种关键的能源基础设施,通过收集实时用电量数据来预测未来的能源需求。
现有的预测模型侧重于集中式框架,其中从各种Home Area Networks (HANs)家庭区域网络 (HAN) 收集的数据被转发到中央服务器。这个过程会导致网络安全威胁。
本文提出了一种基于联邦学习 (FL) 的模型,该模型使用无服务器云计算保护智能电网数据的隐私。
该模型考虑了每个 HAN 中支持Blockchain-enabled Dew Servers (BDS)区块链的 Dew Server (BDS),用于本地数据存储和本地模型训练。
Advanced perturbation and normalization techniques先进的扰动和归一化技术用于减少不规则工作量对训练结果的反向影响。
所提出的模型最大限度地减少了计算和通信成本、攻击概率,并提高了测试准确性。
总体而言,所提出的模型使智能电网具有强大的隐私保护和高精度。
Index Terms—Privacy-preserving, Serverless computing, dew computing, federated learning, blockchain, smart grid
I. INTRODUCTION
由于数据隐私和带宽限制,传统的基于服务器的学习方法并不适用——用户很乐意共享数据,因此数据只能在设备上访问。
联邦学习 (FL) 在这种情况下发挥作用,使用用户的私人数据来确保他们的隐私。 FL 的主要思想是将计算转移到数据源或本地设备,例如智能手机,并作为一个整体联合训练模型。
FL 允许边缘和物联网设备从设备上的数据中获得优势,而无需将数据传输到中央服务器。
在智能电网中,实时电力数据用于预测不同 HAN 的未来能源需求。目前的功耗预测解决方案主要强调将聚合数据从不同 HAN 发送到专用服务器的集中式方法。因此,在实时用电量数据的编制过程中,可能会发生大量网络安全事件。
不同分布式学习技术的发展可以通过任务共享、并行计算和数据共享机制来缓解多方协作学习问题。不幸的是,大多数学习解决方案都需要直接共享数据和学习模型且不受保护的来源,从而导致数据隐私受到损害。
本文提出了一种基于无服务器云计算联邦学习方法的智能电网系统分布式实时隐私保护数据分析解决方案。每个 HAN 使用本地数据训练全局模型。
该框架能够聚合 HANs 训练的模型并生成全局机器学习模型。
数据集的扰动在**local Dew Servers (DSs)**本地露水服务器 (DS) 和全球云上执行,以最大限度地保护隐私。
II. RELATED WORK
在智能电网中,数据空间分隔要么是水平的,要么是垂直的。
如果将分离的数据收集到中央服务器中进行分析,则通信和计算负载将是巨大的。
在大多数技术中,各方以直接和不安全的方式交换他们的数据和模型,导致数据隐私受到损害
[6] 中的作者开发了一种分散的机器学习策略,在模型训练中提出的系统中存在隐私问题。恶意或不受信任的用户可能会构成安全威胁并泄露敏感数据。
[7] 中的作者开发了一个 FL 框架,该框架有一个强有力的假设,即所有各方都是值得信赖的。但是,我们在没有这种假设的情况下考虑模型。
III. RESEARCH METHODOLOGY
研究方法论
本节描述了使用联邦学习和无服务器云计算在智能电网中隐私保护的设计目标、提出的架构和开发过程。
A. Design Objectives
设计目标
-
- Quality of Dataset:
数据集质量
可能会有一些不规范的用户分享不准确的信息。
产生低质量数据集的原因有很多,例如记录错误、智能电表故
- Quality of Dataset: