http://uoj.ac/problem/222 (题目链接)
题意:有n个区间,当有m个区间有公共部分时,求m个区间长度的最大值与最小值之差的最小值。
Solution
线段树+滑动窗口。这道题很好做,可是在考场上就差一点点,我愣是没想出来。
先将区间按长度排序,保证它们的长度是递增的,这样就可以滑动窗口了。将区间的端点离散化后,用线段树维护每个节点被覆盖的次数,记录当前区间被覆盖次数最多的点被覆盖多少次,当次数达到要求是更新答案,将头指针向后移动。
代码:
// uoj222
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#define MOD 1000000007
#define inf 2147483640
#define LL long long
#define free(a) freopen(a".in","r",stdin);freopen(a".out","w",stdout);
using namespace std;
inline int getint() {
int x=0,f=1;char ch=getchar();
while (ch>'9' || ch<'0') {if (ch=='-') f=-1;ch=getchar();}
while (ch>='0' && ch<='9') {x=x*10+ch-'0';ch=getchar();}
return x*f;
}
const int maxn=10000010;
struct data {int l,r,len;}a[maxn];
struct tree {int l,r,s,tag;}tr[maxn<<2];
int b[maxn<<2],n,m,ans,cnt;
bool cmp(data a,data b) {
return a.len<b.len;
}
void build(int k,int s,int t) {
tr[k].l=s;tr[k].r=t;tr[k].s=tr[k].tag=0;
if (s==t) return;
int mid=(s+t)>>1;
build(k<<1,s,mid);
build(k<<1|1,mid+1,t);
}
void pushdown(int k) {
tr[k<<1].s+=tr[k].tag;tr[k<<1|1].s+=tr[k].tag;
tr[k<<1].tag+=tr[k].tag;tr[k<<1|1].tag+=tr[k].tag;
tr[k].tag=0;
}
void update(int k,int s,int t,int val) {
int l=tr[k].l,r=tr[k].r;
if (tr[k].tag!=0) pushdown(k);
if (s==l && r==t) {tr[k].tag+=val;tr[k].s+=val;return;}
int mid=(l+r)>>1;
if (t<=mid) update(k<<1,s,t,val);
else if (s>mid) update(k<<1|1,s,t,val);
else update(k<<1,s,mid,val),update(k<<1|1,mid+1,t,val);
tr[k].s=max(tr[k<<1].s,tr[k<<1|1].s);
}
int main() {
scanf("%d%d",&n,&m);
for (int i=1;i<=n;i++) {
scanf("%d%d",&a[i].l,&a[i].r);
b[++cnt]=a[i].l;b[++cnt]=a[i].r;
a[i].len=a[i].r-a[i].l;
}
sort(a+1,a+1+n,cmp);sort(b+1,b+1+cnt);
build(1,1,cnt);
for (int i=1;i<=n;i++)
a[i].l=lower_bound(b+1,b+1+cnt,a[i].l)-b,a[i].r=lower_bound(b+1,b+1+cnt,a[i].r)-b;
ans=inf;
int L=1,R=1;
while (R<=n) {
update(1,a[R].l,a[R].r,1);
while (tr[1].s>=m) {
ans=min(ans,a[R].len-a[L].len);
update(1,a[L].l,a[L].r,-1);
L++;
}
R++;
}
printf("%d",ans<inf?ans:-1);
return 0;
}