是数论吧
我来说说是怎么回事吧。
你可以用10进制的,也可以用2进制的
显然二进制更为神奇,也更适合拿来装X,实际上二进制要优化的多
借用我看到一个例子来说明下了,由于我忘记来自哪里了,就不注明出处了……
A^6=A*A*A*A*A*A ------5次乘法
=(A*A)*(A*A)*(A*A) ------3次乘法
很显然他们是相等的,但是做的计算量却不同的。
这就是快速幂的核心思想:利用矩阵乘法的结合律,来减少重复计算的次数
那这样考虑取怎样的长度为一个单位,是两个还是三个,当n趋近于无穷大的时候,那么你取得单位将会很渺小,弱弱的如同1了。
感觉这样肯定是不能满足我们的需要了。
那么再看下面这个例子:
A^156=A^128*A^16*A^8*A^4;
(156)10=(10011100)2
很显然任意一个十进制的数都能转化成二进制,额,我好像在说废话
通常我们都会用除2的方式计算二进制转化,但是对二进制转化烂熟于心的人,
一般使用下面这种方法:
156=128+16+8+4;
因此有128=2^7,16=2^4,8=2^3,4=2^2;所以156的二进制就是在第八位上写个1,此处省略...嘎嘎...
二进制位为1的数位所代表的权值即是分解的结果
因此利用这个方法我们很容易想到方法
有没有从上面的例子中得到启示
看看我从网上找来的的模板吧
// m^n % k
int quickpow(int m,int n,int k)
{
int b = 1;
while (n > 0)
{
if (n & 1)
b = (b*m)%k;
n = n >> 1 ;
m = (m*m)%k;
}
return b;
}
当然快速幂,除了求整数的还有一个很重要的应用,那就是
快速矩阵幂:
//HOJ 3493
/*===================================*/
|| 快速幂(quickpow)模板
|| P 为等比,I 为单位矩阵
|| MAX 要初始化!!!!
||
/*===================================*/
/*****************************************************/
#include <cstdio>
const int MAX = 3;
typedef struct{
int m[MAX][MAX];
} Matrix;
Matrix P = {5,-7,4,
1,0,0,
0,1,0,
};
Matrix I = {1,0,0,
0,1,0,
0,0,1,
};
Matrix matrixmul(Matrix a,Matrix b) //矩阵乘法
{
int i,j,k;
Matrix c;
for (i = 0 ; i < MAX; i++)
for (j = 0; j < MAX;j++)
{
c.m[i][j] = 0;
for (k = 0; k < MAX; k++)
c.m[i][j] += (a.m[i][k] * b.m[k][j])%9997;
c.m[i][j] %= 9997;
}
return c;
}
Matrix quickpow(long long n)
{
Matrix m = P, b = I;
while (n >= 1)
{
if (n & 1)
b = matrixmul(b,m);
n = n >> 1;
m = matrixmul(m,m);
}
return b;
}
/*************************************/
int main()
{
Matrix re;
int f[3] = {2,6,19};
long long n;
while (scanf("%I64d",&n) && n != 0)
{
if (n == 1)
printf("1\n");
else if (n <= 4)
printf("%d\n",f[n-2]);
else {
re = quickpow(n - 4);
printf("%d\n",(((re.m[0][0]*f[2])
+ (re.m[0][1]*f[1]) + (re.m[0][2]*f[0])) %9997 + 9997) % 9997);
}
}
return 0;
}
这里再次感谢下网上的码友们的辛勤劳动,让我整理的如此轻松