快速幂

5 篇文章 0 订阅
5 篇文章 0 订阅

是数论吧

我来说说是怎么回事吧。

你可以用10进制的,也可以用2进制的

显然二进制更为神奇,也更适合拿来装X生气,实际上二进制要优化的多

借用我看到一个例子来说明下了,由于我忘记来自哪里了,就不注明出处了……

A^6=A*A*A*A*A*A   ------5次乘法

      =(A*A)*(A*A)*(A*A)  ------3次乘法惊讶

很显然他们是相等的,但是做的计算量却不同的。

这就是快速幂的核心思想:利用矩阵乘法的结合律,来减少重复计算的次数

那这样考虑取怎样的长度为一个单位,是两个还是三个,当n趋近于无穷大的时候,那么你取得单位将会很渺小,弱弱的如同1了。

感觉这样肯定是不能满足我们的需要了。

那么再看下面这个例子:

A^156=A^128*A^16*A^8*A^4;

(156)10=(10011100)2

很显然任意一个十进制的数都能转化成二进制,额,我好像在说废话敲打

通常我们都会用除2的方式计算二进制转化,但是对二进制转化烂熟于心的人,

一般使用下面这种方法:

156=128+16+8+4;

因此有128=2^7,16=2^4,8=2^3,4=2^2;所以156的二进制就是在第八位上写个1,此处省略...嘎嘎...

二进制位为1的数位所代表的权值即是分解的结果

因此利用这个方法我们很容易想到方法吐舌头

有没有从上面的例子中得到启示

看看我从网上找来的的模板吧

// m^n % k
int quickpow(int m,int n,int k)
{
    int b = 1;
    while (n > 0)
    {
          if (n & 1)
             b = (b*m)%k;
          n = n >> 1 ;
          m = (m*m)%k;
    }
    return b;
} 
当然快速幂,除了求整数的还有一个很重要的应用,那就是

快速矩阵幂:

//HOJ 3493
/*===================================*/
|| 快速幂(quickpow)模板 
|| P 为等比,I 为单位矩阵
|| MAX 要初始化!!!!
||
/*===================================*/
/*****************************************************/
#include <cstdio>
const int MAX = 3;

typedef  struct{
        int  m[MAX][MAX];
}  Matrix;

Matrix P = {5,-7,4,
            1,0,0,
            0,1,0,
           };

Matrix I = {1,0,0,
            0,1,0,
            0,0,1,
           };
           
Matrix matrixmul(Matrix a,Matrix b) //矩阵乘法
{
       int i,j,k;
       Matrix c;
       for (i = 0 ; i < MAX; i++)
           for (j = 0; j < MAX;j++)
             {
                 c.m[i][j] = 0;
                 for (k = 0; k < MAX; k++)
                     c.m[i][j] += (a.m[i][k] * b.m[k][j])%9997;
                 c.m[i][j] %= 9997;
             }
       return c;
}
          
Matrix quickpow(long long n)
{
       Matrix m = P, b = I;
       while (n >= 1)
       {
             if (n & 1)
                b = matrixmul(b,m);
             n = n >> 1;
             m = matrixmul(m,m);
       }
       return b;
}
               /*************************************/

int main()
{
    Matrix re;
    int f[3] = {2,6,19};
    long long n;
    while (scanf("%I64d",&n) && n != 0)
    {
          if (n == 1)
             printf("1\n");
          else if (n <= 4)
                  printf("%d\n",f[n-2]);
               else {
                      re = quickpow(n - 4);
                      printf("%d\n",(((re.m[0][0]*f[2]) 
                             + (re.m[0][1]*f[1]) + (re.m[0][2]*f[0])) %9997 + 9997) % 9997);
                      }
    }
    return 0;
}
这里再次感谢下网上的码友们的辛勤劳动,让我整理的如此轻松 大笑


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值