AI基础数学之——掌握中学基础数学:一、代数-函数-函数与图象
✨前言✨
本系列文章目的在于将 中学数学 以计算机语言的方式来完整的讲解表述出来,使得在这个学习过程中可以让在中学就开始接触计算机编程的学生们可以快速的将计算机与所学的内容联合在一起,实践出真知,天赋不是先天自来,而是后天无数次的练习,无数次的使用,每天都在用,没时都在用,每刻都在用才会让这个技能真正的变成自己的能力,这就是本系列文章的目的。
前置 C++ 与 Python 的环境与基础内容
标题 | 连接 |
---|---|
C++ 环境理解与配置 (MinGW) | https://blog.csdn.net/Math_teacher_fan/article/details/145429540 |
C++ 的 Visual Studio Code 运行环境配置 | https://blog.csdn.net/Math_teacher_fan/article/details/145429599 |
入门 C++ 语言:C++ 课程目录 | https://blog.csdn.net/Math_teacher_fan/article/details/145429870 |
Python 环境配置与 Jupyter Notebook 开发工具下载使用 | https://blog.csdn.net/Math_teacher_fan/article/details/145452751 |
入门 Python 语言:Python 基础课程目录 | https://blog.csdn.net/Math_teacher_fan/article/details/145453148 |
中学数学——学习脑图
AI基础数学之——掌握中学基础数学:一、代数-函数-函数与图象
学习目标
- 理解函数的概念及其定义域、值域等基本性质。
- 掌握常见函数(如一次函数、二次函数、反比例函数)的表达式和图像特征。
- 掌握绘制函数图像的基本技巧,包括确定关键点、渐近线及对称轴。
- 熟练运用代数方法解决函数相关问题。
学习正文
函数的基本概念
定义: 设有两个变量
x
x
x 和
y
y
y,如果对于变量
x
x
x 的每一个值,变量
y
y
y 都有唯一确定的值与之对应,则称
y
y
y 是
x
x
x 的函数,记作
y
=
f
(
x
)
y = f(x)
y=f(x)。其中,
x
x
x 称为自变量
,
y
y
y 称为因变量。
定义域: 函数中自变量
x
x
x 所能取的所有实数值的集合称为函数的定义域。
值域: 因变量
y
y
y 的所有可能取值的集合即为函数的值域。
常见函数及其图像
1. 一次函数
- 表达式: y = k x + b y = kx + b y=kx+b(其中 k ≠ 0 k \neq 0 k=0)
- 图像: 是一条直线。
- 斜率: k k k 表示直线的倾斜程度, Δ y Δ x \frac{\Delta y}{\Delta x} ΔxΔy。
- 截距: 当 x = 0 x=0 x=0 时, y = b y = b y=b;当 y = 0 y=0 y=0 时, x = − b k x = -\frac{b}{k} x=−kb。
2. 二次函数
- 标准形式: y = a x 2 + b x + c y = ax^2 + bx + c y=ax2+bx+c(其中 a ≠ 0 a \neq 0 a=0)
- 开口方向: 若 a > 0 a > 0 a>0,开口向上;若 a < 0 a < 0 a<0,开口向下。
- 顶点坐标: ( − b 2 a , f ( − b 2 a ) ) \left( -\frac{b}{2a}, f(-\frac{b}{2a}) \right) (−2ab,f(−2ab))
- 对称轴: x = − b 2 a x = -\frac{b}{2a} x=−2ab
3. 反比例函数
- 表达式: y = k x y = \frac{k}{x} y=xk(其中 k ≠ 0 k \neq 0 k=0)
- 图像: 是双曲线,分布在第一、三象限或第二、四象限。
- 渐近线: 横轴 x = 0 x=0 x=0 和纵轴 y = 0 y=0 y=0。
函数与图象的绘制技巧
- 确定函数类型(一次、二次、反比例等)。
- 找出关键点,如顶点、截距、渐近线等。
- 根据对称性或单调性描绘曲线的大致形状。
- 标记关键点,并用平滑的曲线连接它们。
解题思路
在解决函数相关问题时,首先要明确题目所给信息及要求。例如:
- 对于一次函数的问题,通常需要确定斜率和截距。
- 在处理二次函数时,可能需要计算顶点、判别式或与坐标轴的交点。
- 对于反比例函数,常常涉及渐近线和对称性的应用。
解题技巧
- 绘制函数图像: 先画出关键特征(如顶点、截距、渐近线),再用平滑曲线连接。
- 利用方程求解: 将已知条件代入函数表达式,解方程找到未知数。
- 分析函数性质: 利用单调性、奇偶性等性质简化问题。
练习题
单选题
- 一次函数
y
=
2
x
+
3
y = 2x + 3
y=2x+3 的斜率为:
- A) 0
- B) 2
- C) 3
- D) 1
答案:B) 2
- 抛物线
y
=
x
2
−
4
x
+
3
y = x^2 - 4x + 3
y=x2−4x+3 的顶点坐标为:
- A) (2, -1)
- B) (-2, 7)
- C) (0, 3)
- D) (1, 0)
答案:A) (2, -1)
- 反比例函数
y
=
6
x
y = \frac{6}{x}
y=x6 的图像位于第几象限?
- A) 第一、二象限
- B) 第一、三象限
- C) 第二、四象限
- D) 第三、四象限
答案:B) 第一、三象限
多选题
- 下列哪些函数属于二次函数?
- A) y = 2 x 2 + 3 x y = 2x^2 + 3x y=2x2+3x
- B) y = x 3 − 2 x y = x^3 - 2x y=x3−2x
- C) y = 4 x + 5 y = 4x + 5 y=4x+5
- D) y = 1 x y = \frac{1}{x} y=x1
答案:A, C
判断题
- 对于任何一次函数,斜率都是常数。
- A) 正确
- B) 错误
答案:A) 正确
- 抛物线 y = − 2 x 2 + 4 x y = -2x^2 + 4x y=−2x2+4x 的开口方向是向上的。
- A) 正确
- B) 错误
答案:B) 错误
解答题
- 已知二次函数的顶点为 ( 3 , − 2 ) (3, -2) (3,−2),且过点 ( 1 , 0 ) (1, 0) (1,0)。求其标准形式。
解答:
设标准形式为
y
=
a
(
x
−
h
)
2
+
k
y = a(x - h)^2 + k
y=a(x−h)2+k,其中顶点为
(
h
,
k
)
=
(
3
,
−
2
)
(h, k) = (3, -2)
(h,k)=(3,−2),则:
y
=
a
(
x
−
3
)
2
−
2
y = a(x - 3)^2 - 2
y=a(x−3)2−2
代入点
(
1
,
0
)
(1, 0)
(1,0):
0
=
a
(
1
−
3
)
2
−
2
0 = a(1 - 3)^2 - 2
0=a(1−3)2−2
0
=
4
a
−
2
0 = 4a - 2
0=4a−2
解得:
a
=
1
2
a = \frac{1}{2}
a=21
因此,标准形式为:
y
=
1
2
(
x
−
3
)
2
−
2
y = \frac{1}{2}(x - 3)^2 - 2
y=21(x−3)2−2
- 解方程组:
[
\begin{cases}
y = 2x + 5 \
y = x^2 - 4
\end{cases}
]
解答:
将第一式代入第二式:
2
x
+
5
=
x
2
−
4
2x + 5 = x^2 - 4
2x+5=x2−4
整理得:
x
2
−
2
x
−
9
=
0
x^2 - 2x - 9 = 0
x2−2x−9=0
求解判别式 Δ = ( − 2 ) 2 − 4 × 1 × ( − 9 ) = 4 + 36 = 40 \Delta = (-2)^2 - 4 \times 1 \times (-9) = 4 + 36 = 40 Δ=(−2)2−4×1×(−9)=4+36=40
因此,根为:
x
=
2
±
40
2
=
1
±
10
x = \frac{2 \pm \sqrt{40}}{2} = 1 \pm \sqrt{10}
x=22±40=1±10
对应的
y
y
y 值为:
当
x
=
1
+
10
x = 1 + \sqrt{10}
x=1+10 时,
y
=
2
(
1
+
10
)
+
5
=
7
+
2
10
y = 2(1 + \sqrt{10}) + 5 = 7 + 2\sqrt{10}
y=2(1+10)+5=7+210;
当
x
=
1
−
10
x = 1 - \sqrt{10}
x=1−10 时,
y
=
2
(
1
−
10
)
+
5
=
7
−
2
10
y = 2(1 - \sqrt{10}) + 5 = 7 - 2\sqrt{10}
y=2(1−10)+5=7−210。
所以解为:
(
1
+
10
,
7
+
2
10
)
,
(
1
−
10
,
7
−
2
10
)
(1 + \sqrt{10}, 7 + 2\sqrt{10}), (1 - \sqrt{10}, 7 - 2\sqrt{10})
(1+10,7+210),(1−10,7−210)
答案
问题8的答案: ( 1 + 10 , 7 + 2 10 ) (1 + \sqrt{10}, 7 + 2\sqrt{10}) (1+10,7+210) 和 ( 1 − 10 , 7 − 2 10 ) (1 - \sqrt{10}, 7 - 2\sqrt{10}) (1−10,7−210)
- 已知反比例函数 y = k x y = \frac{k}{x} y=xk,若当 x = 2 x=2 x=2 时 y = 3 y=3 y=3,求 k k k 的值,并绘制该函数的大致图像。
解答:
将
x
=
2
x=2
x=2,
y
=
3
y=3
y=3 代入:
3
=
k
2
3 = \frac{k}{2}
3=2k
解得:
k
=
6
k = 6
k=6
因此,反比例函数为 y = 6 x y = \frac{6}{x} y=x6。其图像位于第一、第三象限。
答案
k = 6 k = 6 k=6,图像是双曲线分布在第一、第三象限。
- 已知二次函数的根为 x = 3 x=3 x=3 和 x = − 2 x=-2 x=−2,且顶点在 ( 0.5 , − 4 ) (0.5, -4) (0.5,−4)。求其标准形式和一般式。
解答:
已知两根为
x
=
3
x=3
x=3 和
x
=
−
2
x=-2
x=−2,则可表示为:
y
=
a
(
x
−
3
)
(
x
+
2
)
y = a(x - 3)(x + 2)
y=a(x−3)(x+2)
展开得:
y
=
a
(
x
2
−
x
−
6
)
y = a(x^2 - x - 6)
y=a(x2−x−6)
已知顶点在 ( h , k ) = ( 0.5 , − 4 ) (h, k) = (0.5, -4) (h,k)=(0.5,−4),对于二次函数 y = a x 2 + b x + c y = ax^2 + bx + c y=ax2+bx+c,顶点横坐标为 h = − b 2 a h = -\frac{b}{2a} h=−2ab。
由一般式展开:
y
=
a
x
2
−
a
x
−
6
a
y = a x^2 - a x - 6a
y=ax2−ax−6a
所以,
h
=
a
2
a
=
0.5
h = \frac{a}{2a} = 0.5
h=2aa=0.5,与已知条件一致。
将顶点坐标代入:
−
4
=
a
(
0.5
)
2
−
a
(
0.5
)
−
6
a
-4 = a(0.5)^2 - a(0.5) - 6a
−4=a(0.5)2−a(0.5)−6a
−
4
=
0.25
a
−
0.5
a
−
6
a
-4 = 0.25a - 0.5a - 6a
−4=0.25a−0.5a−6a
−
4
=
(
−
6.25
)
a
-4 = (-6.25)a
−4=(−6.25)a
解得:
a
=
4
6.25
=
16
25
a = \frac{4}{6.25} = \frac{16}{25}
a=6.254=2516
因此,标准形式为:
y
=
16
25
(
x
2
−
x
−
6
)
y = \frac{16}{25}(x^2 - x - 6)
y=2516(x2−x−6)
展开得一般式:
y
=
16
25
x
2
−
16
25
x
−
96
25
y = \frac{16}{25}x^2 - \frac{16}{25}x - \frac{96}{25}
y=2516x2−2516x−2596
答案
标准形式:
y
=
16
25
(
x
2
−
x
−
6
)
y = \frac{16}{25}(x^2 - x - 6)
y=2516(x2−x−6);
一般式:
y
=
16
25
x
2
−
16
25
x
−
96
25
y = \frac{16}{25}x^2 - \frac{16}{25}x - \frac{96}{25}
y=2516x2−2516x−2596
总结与提升
通过以上练习题的解答,我们可以进一步巩固对一次函数、二次函数和反比例函数的理解。以下是一些提升建议:
- 多做不同类型的函数图像绘制练习,熟悉各种函数形式及其特征。
- 加强方程求解能力,特别是在涉及函数参数时的代入与求解技巧。
- 学会分析问题的关键信息,并将其转化为数学表达式,从而建立正确的模型解决问题。
附录
参考答案
- B) 2
2. A) (2, -1)
3. B) 第一、三象限
4. A, C
5. A) 正确
6. B) 错误
7. y = 1 2 ( x − 3 ) 2 − 2 y = \frac{1}{2}(x - 3)^2 - 2 y=21(x−3)2−2
8. ( 1 + 10 , 7 + 2 10 ) (1 + \sqrt{10}, 7 + 2\sqrt{10}) (1+10,7+210) 和 ( 1 − 10 , 7 − 2 10 ) (1 - \sqrt{10}, 7 - 2\sqrt{10}) (1−10,7−210)
9. k = 6 k = 6 k=6,图像分布在第一、第三象限。
10. 标准形式: y = 16 25 ( x 2 − x − 6 ) y = \frac{16}{25}(x^2 - x - 6) y=2516(x2−x−6);一般式: y = 16 25 x 2 − 16 25 x − 96 25 y = \frac{16}{25}x^2 - \frac{16}{25}x - \frac{96}{25} y=2516x2−2516x−2596
通过完成这些练习,我们对中学阶段的函数知识有了更深入的理解和应用能力。建议在日常学习中多加实践和总结,以巩固掌握的知识点,并尝试解决一些实际生活中的数学问题。
中学函数练习题及答案解析
一、选择与填空题
-
已知一次函数 y = k x + b y = kx + b y=kx+b ,若 k = 2 k=2 k=2 且当 x = 3 x=3 x=3 时 y = 7 y=7 y=7 ,则 b = b= b=
A) 1
B) -1
C) 5
D) -5解析:
将已知条件代入一次函数公式:
7 = 2 × 3 + b 7 = 2 \times 3 + b 7=2×3+b
7 = 6 + b 7 = 6 + b 7=6+b
解得 b = 1 b=1 b=1。答案: A) 1
-
二次函数 y = x 2 − 4 x + 5 y = x^2 - 4x + 5 y=x2−4x+5 的顶点坐标为:
A) (2, 1)
B) (-2, 1)
C) (2, -1)
D) (-2, -1)解析:
二次函数顶点横坐标公式为 x = − b 2 a x = -\frac{b}{2a} x=−2ab,这里 a = 1 a=1 a=1, b = − 4 b=-4 b=−4,
x = 4 2 = 2 x = \frac{4}{2} = 2 x=24=2
将 x = 2 x=2 x=2代入原式:
y = ( 2 ) 2 − 4 ( 2 ) + 5 = 4 − 8 + 5 = 1 y = (2)^2 - 4(2) + 5 = 4 - 8 + 5 = 1 y=(2)2−4(2)+5=4−8+5=1答案: A) (2, 1)
-
反比例函数 y = 6 x y = \frac{6}{x} y=x6 的图像在第几象限?
A) 第一和第三象限
B) 第二和第四象限
C) 所有四个象限
D) 仅第一象限解析:
当 x > 0 x>0 x>0时, y > 0 y>0 y>0;当 x < 0 x<0 x<0时, y < 0 y<0 y<0。因此,图像在第一、第三象限。答案: A) 第一和第三象限
二、解答题
-
已知函数 f ( x ) = 3 x − 2 f(x) = 3x - 2 f(x)=3x−2 ,求
(1) f ( 4 ) f(4) f(4)
(2) f ( a + b ) f(a + b) f(a+b)解析:
(1) 将 x = 4 x=4 x=4代入:
f ( 4 ) = 3 × 4 − 2 = 12 − 2 = 10 f(4) = 3 \times 4 - 2 = 12 - 2 = 10 f(4)=3×4−2=12−2=10(2) 将 x = a + b x=a+b x=a+b代入:
f ( a + b ) = 3 ( a + b ) − 2 = 3 a + 3 b − 2 f(a + b) = 3(a + b) - 2 = 3a + 3b - 2 f(a+b)=3(a+b)−2=3a+3b−2答案:
(1) f ( 4 ) = 10 f(4) = \boxed{10} f(4)=10
(2) f ( a + b ) = 3 a + 3 b − 2 f(a + b) = \boxed{3a + 3b - 2} f(a+b)=3a+3b−2
-
已知二次函数 y = x 2 − 6 x + 8 y = x^2 - 6x + 8 y=x2−6x+8 ,求其顶点和与x轴的交点。
解析:
(1) 顶点坐标:
横坐标公式为 x = 6 2 = 3 x = \frac{6}{2} = 3 x=26=3。
将 x = 3 x=3 x=3代入原式得:
y = 3 2 − 6 ( 3 ) + 8 = 9 − 18 + 8 = − 1 y = 3^2 - 6(3) + 8 = 9 - 18 + 8 = -1 y=32−6(3)+8=9−18+8=−1
所以顶点为 ( 3 , − 1 ) (3, -1) (3,−1)。(2) 与x轴的交点,即解方程 x 2 − 6 x + 8 = 0 x^2 - 6x + 8 = 0 x2−6x+8=0:
分解因式得 ( x − 2 ) ( x − 4 ) = 0 (x-2)(x-4)=0 (x−2)(x−4)=0,
所以 x = 2 x=2 x=2和 x = 4 x=4 x=4。答案:
顶点为 ( 3 , − 1 ) \boxed{(3, -1)} (3,−1),与x轴的交点为 2 \boxed{2} 2和 4 \boxed{4} 4。
-
已知反比例函数 y = k x y = \frac{k}{x} y=xk 过点(2, 5),求 k k k并写出该函数的表达式。
解析:
将 x = 2 x=2 x=2, y = 5 y=5 y=5代入:
5 = k 2 5 = \frac{k}{2} 5=2k
解得 k = 10 k=10 k=10,所以函数表达式为:
y = 10 x y = \frac{10}{x} y=x10答案: k = 10 k = \boxed{10} k=10,表达式为 y = 10 x \boxed{y = \dfrac{10}{x}} y=x10
-
已知一次函数 f ( x ) = 2 x + 3 f(x) = 2x + 3 f(x)=2x+3 和二次函数 g ( x ) = x 2 − 4 x + 5 g(x) = x^2 - 4x + 5 g(x)=x2−4x+5 ,求 f ( 2 ) + g ( 3 ) f(2) + g(3) f(2)+g(3)。
解析:
计算 f ( 2 ) f(2) f(2):
f ( 2 ) = 2 × 2 + 3 = 7 f(2) = 2 \times 2 + 3 = 7 f(2)=2×2+3=7计算 g ( 3 ) g(3) g(3):
g ( 3 ) = 3 2 − 4 × 3 + 5 = 9 − 12 + 5 = 2 g(3) = 3^2 - 4 \times 3 + 5 = 9 - 12 + 5 = 2 g(3)=32−4×3+5=9−12+5=2所以 f ( 2 ) + g ( 3 ) = 7 + 2 = 9 f(2) + g(3) = 7 + 2 = 9 f(2)+g(3)=7+2=9
答案: 9 \boxed{9} 9
三、综合题
-
已知二次函数 y = x 2 − 4 x + 5 y = x^2 - 4x + 5 y=x2−4x+5,完成以下任务:
(1) 将其写成顶点式。
(2) 判断它与x轴是否有交点。解析:
(1) 完成平方:
y = x 2 − 4 x + 5 y = x^2 - 4x + 5 y=x2−4x+5
可以写成:
y = ( x 2 − 4 x + 4 ) + 1 = ( x − 2 ) 2 + 1 y = (x^2 - 4x + 4) + 1 = (x-2)^2 + 1 y=(x2−4x+4)+1=(x−2)2+1(2) 计算判别式 Δ \Delta Δ:
Δ = b 2 − 4 a c = ( − 4 ) 2 − 4 ( 1 ) ( 5 ) = 16 − 20 = − 4 \Delta = b^2 - 4ac = (-4)^2 - 4(1)(5) = 16 - 20 = -4 Δ=b2−4ac=(−4)2−4(1)(5)=16−20=−4
因为 Δ < 0 \Delta < 0 Δ<0,所以该二次函数与x轴没有交点。答案:
(1) 顶点式为 y = ( x − 2 ) 2 + 1 \boxed{y = (x-2)^2 + 1} y=(x−2)2+1
(2) 无交点。
-
已知反比例函数 y = k x y = \frac{k}{x} y=xk过点(3, -2),求其表达式并判断其在哪个象限。
解析:
将 x = 3 x=3 x=3, y = − 2 y=-2 y=−2代入:
− 2 = k 3 -2 = \frac{k}{3} −2=3k
解得 k = − 6 k = -6 k=−6,
所以函数表达式为:
y = − 6 x y = \frac{-6}{x} y=x−6当 x > 0 x>0 x>0时, y < 0 y<0 y<0;当 x < 0 x<0 x<0时, y > 0 y>0 y>0。因此,图像在第二、第四象限。
答案: 表达式 y = − 6 x \boxed{y = -\dfrac{6}{x}} y=−x6,分布在 第二和第四象限 \boxed{\text{第二和第四象限}} 第二和第四象限
-
已知一次函数 f ( x ) = 3 x + 2 f(x) = 3x + 2 f(x)=3x+2和二次函数 g ( x ) = x 2 − 5 x + 6 g(x) = x^2 - 5x + 6 g(x)=x2−5x+6,求 f ( g ( 2 ) ) f(g(2)) f(g(2))的值。
解析:
先计算 g ( 2 ) g(2) g(2):
g ( 2 ) = ( 2 ) 2 − 5 × 2 + 6 = 4 − 10 + 6 = 0 g(2) = (2)^2 - 5 \times 2 + 6 = 4 - 10 + 6 = 0 g(2)=(2)2−5×2+6=4−10+6=0再代入 f ( x ) f(x) f(x):
f ( g ( 2 ) ) = f ( 0 ) = 3 × 0 + 2 = 2 f(g(2)) = f(0) = 3 \times 0 + 2 = 2 f(g(2))=f(0)=3×0+2=2答案: 2 \boxed{2} 2
通过以上练习,我们掌握了中学阶段的函数知识,并能够灵活应用这些知识解决实际问题。建议在日常学习中多加实践和总结,以巩固掌握的知识点,并尝试解决一些实际生活中的数学问题。