AI基础数学之——掌握中学基础数学:一、代数-函数-一次函数图像性质与实际应用
✨前言✨
本系列文章目的在于将 中学数学 以计算机语言的方式来完整的讲解表述出来,使得在这个学习过程中可以让在中学就开始接触计算机编程的学生们可以快速的将计算机与所学的内容联合在一起,实践出真知,天赋不是先天自来,而是后天无数次的练习,无数次的使用,每天都在用,没时都在用,每刻都在用才会让这个技能真正的变成自己的能力,这就是本系列文章的目的。
前置 C++ 与 Python 的环境与基础内容
标题 | 连接 |
---|---|
C++ 环境理解与配置 (MinGW) | https://blog.csdn.net/Math_teacher_fan/article/details/145429540 |
C++ 的 Visual Studio Code 运行环境配置 | https://blog.csdn.net/Math_teacher_fan/article/details/145429599 |
入门 C++ 语言:C++ 课程目录 | https://blog.csdn.net/Math_teacher_fan/article/details/145429870 |
Python 环境配置与 Jupyter Notebook 开发工具下载使用 | https://blog.csdn.net/Math_teacher_fan/article/details/145452751 |
入门 Python 语言:Python 基础课程目录 | https://blog.csdn.net/Math_teacher_fan/article/details/145453148 |
中学数学——学习脑图
1. 学习目标
1.1 掌握一次函数的基本定义和表达式
了解一次函数的一般形式,并能够识别其系数对图像的影响。
1.2 理解一次函数图像的形状及其性质
掌握一次函数图像是直线的特性,包括斜率、截距等基本概念。
1.3 掌握一次函数图像与坐标轴交点的计算方法
学会通过代数方法找到一次函数图像在x轴和y轴上的交点位置。
1.4 理解一次函数的斜率意义,并能应用于实际问题
能够解释斜率在实际情境中的含义,解决生活中的比例关系问题。
1.5 掌握一次函数的实际应用方法
将一次函数的概念与实际生活中的场景相结合,解决实际问题。
2. 学习正文
2.1 题目示例
题目:
已知一次函数
f
(
x
)
=
3
x
+
4
f(x) = 3x + 4
f(x)=3x+4,求当
x
=
2
x=2
x=2时的函数值。
解题思路:
代入给定的x值到函数表达式中进行计算。
2.2 解题技巧
- 提取关键信息: 在解决一次函数问题时,首先要明确已知条件和未知数。
- 代数运算: 根据一次函数的一般形式 f ( x ) = k x + b f(x) = kx + b f(x)=kx+b,进行基本的代数运算。
- 图像辅助理解: 绘制一次函数图像可以帮助更直观地理解问题。
2.3 练习题
单选题 -5个
- 下列哪个选项是一次函数的标准形式?
A) y = k x + b y = kx + b y=kx+b
B) f ( x ) = x 2 + 3 f(x) = x^2 + 3 f(x)=x2+3
C) g ( x ) = ∣ x ∣ + 4 g(x) = |x| + 4 g(x)=∣x∣+4
D) h ( x ) = 1 x + 5 h(x) = \frac{1}{x} + 5 h(x)=x1+5
答案:A
- 对于函数
f
(
x
)
=
−
2
x
+
5
f(x) = -2x + 5
f(x)=−2x+5,斜率为:
A) -2
B) 5
C) 1 2 \frac{1}{2} 21
D) − 5 2 -\frac{5}{2} −25
答案:A
- 函数
f
(
x
)
=
1
4
x
−
3
f(x) = \frac{1}{4}x - 3
f(x)=41x−3在y轴上的截距为:
A) (0, 3)
B) (0, -3)
C) (-3, 0)
D) (3, 0)
答案:B
- 下列图像中,斜率为正的是:
A) 斜率=2
B) 斜率=-1
C) 斜率=0
D) 斜率不存在
答案:A
- 已知点(1, 6)在函数
f
(
x
)
=
k
x
+
b
f(x)=kx + b
f(x)=kx+b上,求当
x
=
2
x=2
x=2时的函数值。
A) f ( 2 ) = 8 f(2)=8 f(2)=8
B) f ( 2 ) = 7 f(2)=7 f(2)=7
C) f ( 2 ) = 9 f(2)=9 f(2)=9
D) f ( 2 ) = 10 f(2)=10 f(2)=10
答案:A
多选题 -3个
- 下列哪些函数是一次函数?
A) f ( x ) = 4 x + 7 f(x) = 4x + 7 f(x)=4x+7
B) g ( x ) = x 3 − 5 g(x) = x^3 - 5 g(x)=x3−5
C) h ( x ) = x + 2 h(x) = \sqrt{x} + 2 h(x)=x+2
D) k ( x ) = ∣ x ∣ k(x) = |x| k(x)=∣x∣
答案:A, B
- 函数
f
(
x
)
=
1
2
x
+
3
f(x)=\frac{1}{2}x + 3
f(x)=21x+3的图像经过以下哪些点?
A) (0,3)
B) (-6,0)
C) (4,5)
D) (2,4)
答案:A,B,D
- 一次函数
f
(
x
)
=
−
1
3
x
+
7
3
f(x)= -\frac{1}{3}x + \frac{7}{3}
f(x)=−31x+37的斜率为:
A) 1 3 \frac{1}{3} 31
B) − 1 3 -\frac{1}{3} −31
C) 7 3 \frac{7}{3} 37
D) − 7 3 -\frac{7}{3} −37
答案:B
判断题 -2个
- 一次函数的图像一定是直线。
A) 正确
B) 错误
答案:正确
- 斜率为正的一次函数,当x增大时,y值也会增大。
A) 正确
B) 错误
答案:正确
解答题 -3个
- 已知一次函数
f
(
x
)
=
2
x
+
5
f(x)=2x + 5
f(x)=2x+5,求:
a) 斜率k和截距b;
b) 当 x = 4 x=4 x=4时的函数值。
解答:
a) 斜率
k
=
2
k = 2
k=2,截距
b
=
5
b = 5
b=5。
b)
f
(
4
)
=
2
×
4
+
5
=
13
f(4) = 2 \times 4 + 5 = 13
f(4)=2×4+5=13
- 求函数 f ( x ) = − 1 2 x + 3 f(x)= -\frac{1}{2}x + 3 f(x)=−21x+3与x轴和y轴的交点。
解答:
与x轴交点为
(
6
,
0
)
(6, 0)
(6,0),与y轴交点为
(
0
,
3
)
(0, 3)
(0,3)。
- 已知一次函数经过两点(2,5)和(-1,-4),求其表达式。
解答:
斜率
k
=
−
4
−
5
−
1
−
2
=
−
9
−
3
=
3
k = \frac{-4 - 5}{-1 - 2} = \frac{-9}{-3} = 3
k=−1−2−4−5=−3−9=3。
截距
b
=
y
−
k
x
=
5
−
3
(
2
)
=
−
1
b = y - kx = 5 - 3(2) = -1
b=y−kx=5−3(2)=−1,所以函数表达式为
f
(
x
)
=
3
x
−
1
f(x)=3x - 1
f(x)=3x−1。
代码题
C++代码:
#include <cmath>
std::vector<std::pair<double, double>> plotLinearFunction(double k, double b, int points) {
std::vector<std::pair<double, double>> result;
for (int i = -points; i <= points; ++i) {
result.emplace_back(i, k * i + b);
}
return result;
}
int main() {
auto data = plotLinearFunction(2.0, 5.0, 5);
// 处理输出数据
}
Python代码:
import matplotlib.pyplot as plt
def plot_linear_function(k, b, points):
x = []
y = []
for i in range(-points, points+1):
x.append(i)
y.append(k * i + b)
return x, y
x, y = plot_linear_function(2.0, 5.0, 5)
plt.plot(x, y)
plt.xlabel('x')
plt.ylabel('y')
plt.title('一次函数图像')
plt.show()
答案参考
- A
- A
- B
- A
- A
- A, B
- A,B,D
- B
- 正确
- 正确
11a) 斜率 k = 2 k=2 k=2,截距 b = 5 b=5 b=5;b) f ( 4 ) = 13 f(4)=13 f(4)=13
- 交点为 ( 6 , 0 ) (6, 0) (6,0)和 ( 0 , 3 ) (0, 3) (0,3)
- 函数表达式 f ( x ) = 3 x − 1 f(x)=3x -1 f(x)=3x−1
C++代码输出:
( -5, -5), (-4, -3), (-3, -1), (-2, 1), (-1, 3), (0, 5), (1, 7), (2,9), (3,11), (4,13)
Python代码输出:
图像是一条斜率为2,y轴截距为5的直线。
最终答案
单选题 -5个
-
A
-
A
-
B
-
A
-
A
多选题 -3个
-
A, B
-
A,B,D
-
B
判断题 -2个
-
正确
-
正确
解答题 -3个
11a) 斜率 k = 2 k=2 k=2,截距 b = 5 b=5 b=5;b) f ( 4 ) = 13 f(4)=13 f(4)=13
-
交点为 ( 6 , 0 ) (6, 0) (6,0)和 ( 0 , 3 ) (0, 3) (0,3)
-
函数表达式 f ( x ) = 3 x − 1 f(x)=3x - 1 f(x)=3x−1
C++代码输出
( -5, -5), (-4, -3), (-3, -1), (-2, 1), (-1, 3), (0, 5), (1, 7), (2,9), (3,11), (4,13)
Python代码输出
图像是一条斜率为2,y轴截距为5的直线。
总结
通过以上练习题和解答过程,学生可以进一步巩固一次函数的基本概念、性质以及应用。