AI基础数学之——掌握中学基础数学:二、几何-图形的变换-平移/对称/旋转/视图与投影
✨前言✨
本系列文章目的在于将 中学数学 以计算机语言的方式来完整的讲解表述出来,使得在这个学习过程中可以让在中学就开始接触计算机编程的学生们可以快速的将计算机与所学的内容联合在一起,实践出真知,天赋不是先天自来,而是后天无数次的练习,无数次的使用,每天都在用,没时都在用,每刻都在用才会让这个技能真正的变成自己的能力,这就是本系列文章的目的。
前置 C++ 与 Python 的环境与基础内容
标题 | 连接 |
---|---|
C++ 环境理解与配置 (MinGW) | https://blog.csdn.net/Math_teacher_fan/article/details/145429540 |
C++ 的 Visual Studio Code 运行环境配置 | https://blog.csdn.net/Math_teacher_fan/article/details/145429599 |
入门 C++ 语言:C++ 课程目录 | https://blog.csdn.net/Math_teacher_fan/article/details/145429870 |
Python 环境配置与 Jupyter Notebook 开发工具下载使用 | https://blog.csdn.net/Math_teacher_fan/article/details/145452751 |
入门 Python 语言:Python 基础课程目录 | https://blog.csdn.net/Math_teacher_fan/article/details/145453148 |
中学数学——学习脑图
1. 学习目标
- 理解并掌握平移、对称(镜像反射)、旋转以及视图与投影的基本概念。
- 掌握这些几何变换在实际问题中的应用方法。
- 培养空间想象力和图形分析能力。
- 巩固通过数学公式表达和解决几何变换问题的能力。
2. 学习正文
平移
-
定义:平移是指将一个图形沿着某个方向移动一定的距离,不改变其形状、大小和方向的过程。
- 数学表示:点 ( x , y ) (x, y) (x,y)向右平移 a a a个单位后的坐标为 ( x + a , y ) (x + a, y) (x+a,y)。
- 示例:一个三角形从点 ( 1 , 2 ) (1,2) (1,2)平移到 ( 4 , 5 ) (4,5) (4,5),需要向右移动3个单位和向上移动3个单位。
-
解题思路:
- 确定平移的方向和距离。
- 应用坐标变化公式进行计算。
-
解题技巧:关注坐标的变化规律,可分解为x轴和y轴的变化分别处理。
对称(镜像反射)
-
定义:对称是将一个图形关于某条直线(对称轴)进行翻转的操作,得到其镜像图形。
- 数学表示:点 ( x , y ) (x, y) (x,y)关于y轴的对称点为 ( − x , y ) (-x, y) (−x,y);关于x轴的对称点为 ( x , − y ) (x, -y) (x,−y)。
- 示例:点 ( 3 , 4 ) (3,4) (3,4)关于y轴的对称点是 ( − 3 , 4 ) (-3,4) (−3,4)。
-
解题思路:
- 确定对称轴的位置和方向。
- 应用坐标变化公式进行计算。
-
解题技巧:记住关于x轴、y轴以及直线 y = x y = x y=x的对称点变化规律。
旋转
-
定义:旋转是将一个图形绕某个固定点(旋转中心)旋转一定角度,得到新的位置和方向的过程。
- 数学表示:点 ( x , y ) (x, y) (x,y)绕原点逆时针旋转θ角后的坐标为 ( x cos θ − y sin θ , x sin θ + y cos θ ) (x\cosθ - y\sinθ, x\sinθ + y\cosθ) (xcosθ−ysinθ,xsinθ+ycosθ)。
- 示例:点 ( 1 , 0 ) (1,0) (1,0)绕原点逆时针旋转90度后变为 ( 0 , 1 ) (0,1) (0,1)。
-
解题思路:
- 确定旋转中心和旋转角度。
- 应用旋转矩阵进行计算。
-
解题技巧:记住旋转矩阵的形式,并注意角度的正负号对应旋转方向。
视图与投影
-
定义:视图是通过正投影的方式展示物体不同面的形状;而投影则是将三维图形投射到二维平面上,形成二维图像。
- 正投影(视图)示例:工程制图中的正视图、俯视图和侧视图。
- 投影变换:点 ( x , y , z ) (x, y, z) (x,y,z)在XY平面的正投影为 ( x , y ) (x, y) (x,y)。
-
解题思路:
- 确定投影方向和平面。
- 应用投影公式进行计算。
-
解题技巧:掌握不同视图对应的坐标轴关系,能够将三维问题转换为二维分析。
3. 练习题
单选题(5个)
- 关于平移的描述,正确的是?
- A) 改变图形的位置和大小。
- B) 不改变图形的方向,只改变位置。
- C) 改变方向的同时改变位置。
- D) 保持所有属性不变。
答案:B
- 点
(
4
,
5
)
(4,5)
(4,5)关于y轴的对称点是:
- A) ( 4 , − 5 ) (4,-5) (4,−5)
- B) ( − 4 , 5 ) (-4,5) (−4,5)
- C) ( − 4 , − 5 ) (-4,-5) (−4,−5)
- D) ( 5 , 4 ) (5,4) (5,4)
答案:B
- 将点
(
2
,
3
)
(2,3)
(2,3)绕原点逆时针旋转90度后的坐标为:
- A) ( − 3 , 2 ) (-3,2) (−3,2)
- B) ( − 3 , − 2 ) (-3,-2) (−3,−2)
- C) ( 3 , − 2 ) (3,-2) (3,−2)
- D) ( 3 , 2 ) (3,2) (3,2)
答案:A
- 下列哪种图形变换不改变图形的形状和大小?
- A) 平移
- B) 对称
- C) 旋转
- D) 投影
答案:C
- 工程制图中常用的视图有:
- A) 正视图
- B) 俯视图
- C) 侧视图
- D) 所有都正确
答案:D
多选题(3个)
- 图形的平移变换需要考虑的因素有:
- A) 平移方向
- B) 平移距离
- C) 平移路径长度
- D) 平移角度
答案:A, B
- 对称轴可以是:
- A) 水平线
- B) 垂直线
- C) 斜直线
- D) 曲ved lines
答案:A, B, C
- 投影的类型有:
- A) 正投影
- B) 透视投影
- C) 斜投影
- D) 平行投影
答案:A, B, C
判断题(2个)
- 平移变换具有可逆性。√
正确。
- 对称轴是图形翻折的对折线。√
正确。
解答题(3个)
-
画出点 ( 2 , 4 ) (2,4) (2,4)向左平移5个单位后的坐标,并写出新坐标。
- 答:原坐标 ( 2 , 4 ) (2,4) (2,4),平移后x坐标减少5,变为 ( − 3 , 4 ) (-3,4) (−3,4)。
-
求点 ( 3 , − 2 ) (3,-2) (3,−2)关于直线 y = x y = x y=x的对称点。
- 答:点 ( 3 , − 2 ) (3,-2) (3,−2)关于 y = x y=x y=x对称后的坐标为 ( − 2 , 3 ) (-2, 3) (−2,3)。
-
将点 ( 1 , 0 , 2 ) (1,0,2) (1,0,2)绕z轴逆时针旋转90度,求投影到XY平面后的坐标。
- 答:旋转后xy分量变为 ( 0 , − 1 , 2 ) (0,-1,2) (0,−1,2),投影后z被忽略,得到 ( 0 , − 1 ) (0,-1) (0,−1)。
投影题(1个)
用正投影方法画出点 ( 3 , 4 , 5 ) (3,4,5) (3,4,5)在XY、XZ和YZ平面上的视图坐标。
- XY平面视图: ( 3 , 4 ) (3,4) (3,4)
- XZ平面视图: ( 3 , 5 ) (3,5) (3,5)
- YZ平面视图: ( 4 , 5 ) (4,5) (4,5)
4. 参考答案
平移变换:
- 特点:保持图形形状和大小不变,仅改变位置。
对称变换:
- 轴对称:将图形关于某条直线镜像翻转。
旋转变换:
- 旋转矩阵:用矩阵形式表示绕原点的旋转。
投影变换:
- 正投影:利用平行光线将三维图形投射到二维平面上。
总结
通过以上练习题和参考答案,可以更好地理解平面几何中的各种变换及其应用。这些题目涵盖了基本概念、计算方法以及实际绘图应用,对于掌握这部分知识点非常重要。