Matplotlib库入门

Matplotlib库由各种可视化类构成,内部结构复杂,受Matlab启发
matplotlib.pyplot是绘制各类可视化图形的命令子库,相当于快捷方式

import matplotlib.pyplot as plt

plt.plot()只有一个输入列表或数组时,参数被当作Y轴,X轴以索引自动生成

import matplotlib.pyplot as plt

plt.plot([3,1,4,5,2])
plt.ylabel("Grade")
plt.show()

![[Matplotlib库入门1.png]]

plt.savefig()将输出图形存储为文件,默认PNG格式,可以通过dpi修改输出质量

import matplotlib.pyplot as plt

plt.plot([3,1,4,5,2])
plt.ylabel("Grade")
plt.savefig('test',dpi=600) #PNG文件
plt.show()

plt.plot(x,y)当有两个以上参数时,按照X轴和Y轴顺序绘制数据点

import matplotlib.pyplot as plt

plt.plot([0,2,4,6,8],[3,1,4,5,2])
plt.ylabel("Grade")
plt.axis([-1,10,0,6])
plt.show()

![[Matplotlib库入门2.png]]

pyplot的绘图区域

plt.subplot(nrows,ncols,plot_number, **kwargs)

plt.subplot(3,2,4)   #按两条横线,一条竖线,划分6个子区域
plt.subplot(324)     

#在全局绘图区域中创建一个分区体系,并定位到一个子绘图区域

![[Matplotlib库入门3.png]]

import matplotlib.pyplot as plt
import numpy as np

def f(t):
    return np.exp(-t) * np.cos(2 * np.pi * t)

a = np.arange(0.0,5.0,0.02)

plt.subplot(211)
plt.plot(a,f(a))

plt.subplot(2,1,2)
plt.plot(a,np.cos(2*np.pi*a),'r--')
plt.show()

![[Matplotlib库入门4.png]]

pyplot函数

plt.plot(x , y , format_string, **kwargs)

 x : X轴数据,列表或数组,可选
 y : Y轴数据,列表或数组
 format_string : 控制曲线的格式字符串,可选
 **kwargs : 第二组或更多(x,y,format_string)
 
 当绘制多条曲线时,各条曲线的x不能省略

例子

import matplotlib.pyplot as plt
import numpy as np

a = np.arange(10)
plt.plot(a,a*1.5,a,a*2.5,a,a*3.5,a,a*4.5)
plt.show()

![[Matplotlib库入门5.png]]

format_string: 控制曲线的格式字符串,可选由颜色字符、风格字符和标记字符组成

颜色字符说明颜色字符说明
‘b’蓝色‘m’洋红色 magenta
‘g’绿色‘y’黄色
‘r’红色‘k’黑色
‘c’青绿色 cyan‘w’白色
‘#00800’RGB某颜色‘0.8’灰度值字符串
风格字符说明
‘-’实线
‘–’破折线
‘-.’点划线
‘:’虚线
’ ’ ’ ’无线条
标记字符说明标记字符说明标记字符说明
‘.’点标记‘1’下花三角标记‘h’竖六边形标记
‘,’像素标记(极小点)‘2’上花三角标记‘H’横六边形标记
‘o’实心圈标记‘3’左花三角标记‘+’十字标记
‘v’倒三角标记‘4’右花三角标记‘x’x标记
‘^’上三角标记‘s’实心方形标记‘D’菱形标记
‘>’右三角标记‘p’实心五角标记‘d’瘦菱形标记
‘<’左三角标记‘*’星形标记‘|’垂直线标记
import matplotlib.pyplot as plt
import numpy as np

a = np.arange(10)
plt.plot(a,a*1.5,'go-',a,a*2.5,'rx',a,a*3.5,'*',a,a*4.5,'b-.')
plt.show()

![[Matplotlib库入门6.png]]

**kwargs : 第二组或更多(x,y,format_string)
color : 控制颜色, color='green'
linestyle : 线条风格, linestyle='dashed'
marker : 标记风格, marker='o'
markerfacecolor: 标记颜色, markerfacecolor='blue'
markersize : 标记尺寸, markersize=20
……

pyplot的中文显示

第一种方法

pyplot并不默认支持中文显示,需要rcParams修改字体实现

import matplotlib.pyplot as plt
import matplotlib

matplotlib.rcParams['font.family'] = 'Simhei'  #黑体
plt.plot([3,1,4,5,2])
plt.ylabel("纵轴(值)")
plt.show()
属性说明
‘font.family’用于显示字体的名字
‘font.style’字体风格,正常’normal’或 斜体’italic’
‘font.size’字体大小,整数字号或者’large’、‘x‐small’
中文字体的种类 rcParams[‘font.family’]
中文字体说明
‘SimHei’中文黑体
‘Kaiti’中文楷体
‘LiSu’中文隶书
‘FangSong’中文仿宋
‘YouYuan’中文幼圆
‘STSong’华文宋体
例子
import matplotlib.pyplot as plt
import matplotlib
import numpy as np

matplotlib.rcParams['font.family']='STSong'
matplotlib.rcParams['font.size'] = 20

a = np.arange(0.0,5.0,0.02)

plt.xlabel('横轴:时间')
plt.ylabel('纵轴:振幅')
plt.plot(a,np.cos(2*np.pi*a),'r--')
plt.show()

![[Matplotlib库入门7.png]]

第二种方法

在有中文输出的地方,增加一个属性:fontproperties

import matplotlib.pyplot as plt
import numpy as np

a = np.arange(0.0,5.0,0.02)

plt.xlabel('横轴:时间',fontproperties='SimHei',fontsize=20)
plt.ylabel('纵轴:振幅',fontproperties='SimHei',fontsize=20)
plt.plot(a,np.cos(2*np.pi*a),'r--')
plt.show()

pyplot的文本显示函数

函数说明
plt.xlabel()对 X轴增加文本标签
plt.ylabel()对 Y轴增加文本标签
plt.title()对图形整体增加文本标签
plt.text()在任意位置增加文本
plt.annotate()在图形中增加带箭头的注解
例子
import matplotlib.pyplot as plt
import numpy as np

a = np.arange(0.0,5.0,0.02)
plt.plot(a,np.cos(2*np.pi*a),'r--')

plt.xlabel('横轴:时间',fontproperties='SimHei',fontsize=15,color='green')
plt.ylabel('纵轴:振幅',fontproperties='SimHei',fontsize=15)
plt.title(r'正弦波实例 $y=cos(2\pi,x)$',fontproperties='SimHei',fontsize=15)
plt.text(2,1,r'$\mu=100$',fontsize=15)
plt.axis([-1,6,-2,2])
plt.grid(True)
plt.show()

![[Matplotlib库入门8.png]]

#新增语句
plt.annotate(r'$\mu=100$',xy=(2,1),xytext=(3,1.5),arrowprops=dict(facecolor='black',shrink=0.1,width=2))

![[Matplotlib库入门9.png]]

pyplot的子绘图区域

plt.subplot2grid(GridSpec, CurSpec, colspan=1, rowspan=1)
理念:设定网格,选中网格,确定选中行列区域数量,编号从0开始
plt.subplot2grid((3,3), (1,0), colspan=2)
![[Matplotlib库入门11.png]]

pyplot的基础图标函数

函数说明
plt.plot(x,y,fmt,…)绘制一个坐标图
plt.boxplot(data,notch,position)绘制一个箱形图
plt.bar(left,height,width,bottom)绘制一个条形图
plt.barh(width,bottom,left,height)绘制一个横向条形图
plt.polar(theta, r)绘制绘制极坐标图
plt.pie(data, explode)绘制饼图
plt.psd(x,NFFT=256,pad_to,Fs)绘制功率谱密度图
plt.specgram(x,NFFT=256,pad_to,F)绘制谱图
plt.cohere(x,y,NFFT=256,Fs)绘制X ‐ Y的相关性函数
plt.scatter(x,y)绘制散点图,其中,x 和 y长度相同
plt.step(x,y,where)绘制步阶图
plt.hist(x,bins,normed)绘制直方图
plt.contour(X,Y,Z,N)绘制等值图
plt.vlines()绘制垂直图
plt.stem(x,y,linefmt,markerfmt)绘制柴火图
plt.plot_date()绘制数据日期

饼图的绘制

import matplotlib.pyplot as plt

labels = 'Frogs','Hogs','Dogs','Logs'
sizes = [15,30,45,10]
explode = (0,0.1,0,0)
plt.pie(sizes,explode=explode,labels = labels,autopct='%1.1f%%',shadow=False,startangle=90)
plt.show()

![[Matplotlib库入门12.png]]

直方图的绘制

import matplotlib.pyplot as plt
import numpy as np

np.random.seed(10)
mu,sigma=100,20  #均值和标准差
a = np.random.normal(mu,sigma,size=100)
plt.hist(a,40,normed=1,histtype='stepfilled',facecolor='b',alpha=0.75)
#plt.hist(a,10,normed=1,histtype='stepfilled',facecolor='b',alpha=0.75)
plt.title('Histogram')
plt.show()

![[Matplotlib库入门13.png]]

绘制极坐标图

import matplotlib.pyplot as plt
import numpy as np

N = 10
theta = np.linspace(0.0,2*np.pi,N,endpoint=False)
radii = 10 * np.random.rand(N)
width = np.pi / 2*np.random.rand(N)

ax = plt.subplot(111, projection='polar')
bars = ax.bar(theta,radii,width=width,bottom=0.0)

for r,bar in zip(radii,bars):
    bar.set_facecolor(plt.cm.viridis(r / 10.))
    bar.set_alpha(0.5)

plt.show()

![[Matplotlib库入门14.png]]

绘制散点图

import matplotlib.pyplot as plt
import numpy as np

fig,ax = plt.subplots()
ax.plot(10*np.random.randn(100),10*np.random.randn(100),'o')
ax.set_title('Simple Scatter')
plt.show()

![[Matplotlib库入门15.png]]

引力波的绘制

import matplotlib.pyplot as plt
import numpy as np
from scipy.io import wavfile

rate_h,hstrain=wavfile.read(r"H1_Strain.wav","rb")
rate_l,lstrain=wavfile.read(r"L1_Strain.wav","rb")
reftime,ref_H1=np.genfromtxt('wf_template.txt').transpose()

htime_interval = 1/rate_h
ltime_interval = 1/rate_l
fig = plt.figure(figsize=(12,6))

#丢失信号起始点
htime_len = hstrain.shape[0]/rate_h
htime = np.arange(-htime_len/2, htime_len/2 , htime_interval)
plth = fig.add_subplot(221)
plth.plot(htime, hstrain, 'y')
plth.set_xlabel('Time (seconds)')
plth.set_ylabel('H1 Strain')
plth.set_title('H1 Strain')

ltime_len = lstrain.shape[0]/rate_l
ltime = np.arange(-ltime_len/2, ltime_len/2 , ltime_interval)
pltl = fig.add_subplot(222)
pltl.plot(ltime, lstrain, 'g')
pltl.set_xlabel('Time (seconds)')
pltl.set_ylabel('L1 Strain')
pltl.set_title('L1 Strain')

pltref = fig.add_subplot(212)
pltref.plot(reftime, ref_H1)
pltref.set_xlabel('Time (seconds)')
pltref.set_ylabel('Template Strain')
pltref.set_title('Template')
fig.tight_layout()

plt.savefig("Gravitational_Waves_Original.png")
plt.show()
plt.close(fig)

![[Gravitational_Waves_Original.png]]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

注释写满人生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值