自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

🌟【AI炼丹师 | 你的数字技术搭子】 大二解锁3200+道友同行👾

🌟【AI炼丹师 | 你的数字技术搭子】 大二解锁3200+道友同行👾 | 专注AI工程化与落地实战💻 📚 在这里你能获得: ✅ 校园视角拆解硬核技术 ✅ 深度学习/机器学习/数学建模 ✅ 接私活变现的野路子经验分享 🤝 欢迎勾搭: 👉 24

  • 博客(134)
  • 收藏
  • 关注

原创 git clone克隆错误的解决方案(fatal: unable to access ‘https://github.com/docker/.../.git/‘: Could not connect)

Docker入门实践常见问题及解决方案:本文记录了使用Docker过程中遇到的典型问题及解决方法。首次克隆项目时遇到443端口连接失败,可通过取消git代理或设置系统代理解决;构建镜像时yarn安装失败,需在Dockerfile中添加Python环境并配置国内镜像源;运行容器时要注意权限问题。文章还包含更新应用和分享镜像的操作步骤,重点解决了网络连接、环境配置等常见障碍,为Docker初学者提供了实用的问题排查指南。

2025-08-12 12:50:08 696 7

原创 【数字图像处理系列笔记】Ch10:图像分类

本文概述了9种主流分类算法的原理、核心思想与关键特点。主要包括:1)K近邻(KNN)基于邻近样本投票分类;2)朴素贝叶斯基于条件独立假设的概率计算;3)支持向量机(SVM)寻找最大间隔超平面;4)神经网络通过多层非线性变换建模复杂关系;5)贝叶斯网络构建变量间概率依赖关系;6)逻辑回归通过Sigmoid函数实现概率分类;7)随机森林通过多决策树集成降低方差;8)提升决策树(如AdaBoost、XGBoost)串行纠正错误提升性能;9)受限玻尔兹曼机(RBM)作为生成模型学习数据分布。文章对比了各算法的适用场

2025-08-12 12:45:08 899 4

原创 【数字图像处理系列笔记】Ch09:特征提取与表示

数字图像特征提取方法主要分为传统手工特征和深度学习特征两类。传统方法包括全局特征(颜色直方图、LBP纹理、形状描述子等)和局部特征(SIFT、SURF等关键点描述),通过数学统计描述图像特性。而CNN通过卷积、池化等操作自动学习多层次特征表示,从底层边缘到高层语义。BOVW模型将局部特征聚类为视觉单词,形成词袋表示。当前趋势是结合自监督学习和轻量化网络,实现更高效的特征提取。特征选择需权衡计算效率与表达能力,传统方法适合简单任务,深度学习方法更适合复杂场景理解。

2025-08-11 14:44:12 908 1

原创 【数字图像处理系列笔记】Ch08:彩色图像处理

摘要: 彩色图像处理基于人眼视觉的三原色理论(RGB),通过亮度、色调、饱和度描述色彩特性。常用色彩空间包括RGB(显示设备)、CMYK(印刷)、HSI(人眼感知)和YUV/YCbCr(视频编码),各具优势与应用场景。伪彩色处理将灰度图像映射为彩色以增强区分度,适用于医学影像和遥感分析。全彩色处理需兼顾多通道关联性,涉及色彩平衡和通道运算。彩色变换(如亮度/对比度调整、空间转换)可校正偏差或实现艺术效果。平滑(均值/中值滤波)用于降噪,锐化(梯度/拉普拉斯算子)提升边缘清晰度,广泛应用于摄影、医学及计算机视

2025-08-11 14:43:30 1143

原创 【数字图像处理系列笔记】Ch07:形态学图像处理

形态学操作是图像处理中的“数字雕刻刀”,通过腐蚀、膨胀等基础操作实现图像优化。开运算(先腐蚀后膨胀)可去除亮噪声,闭运算(先膨胀后腐蚀)能填补暗孔洞,击中-击不中变换则用于精准形状匹配。这些操作广泛应用于医疗影像分析、工业检测和文字处理等领域。例如,处理血细胞图像时,闭运算可有效消除细胞内部黑点,圆形结构元能更好匹配细胞形态。核心在于根据实际需求选择合适操作和结构元参数,实现“去噪+保形”的平衡。

2025-08-08 15:24:15 1009

原创 【数字图像处理系列笔记】Ch06:图像压缩

本文系统阐述了图像压缩技术的原理与方法。首先分析了三种数据冗余类型:空间冗余(像素间相关性)、编码冗余(概率分布与编码不匹配)和视觉冗余(人眼感知局限),并介绍相应压缩技术如预测编码、霍夫曼编码和量化处理。其次详细对比了有损压缩(如JPEG、MP3)与无损压缩(如PNG、ZIP)的技术特点,指出有损压缩通过舍弃次要信息获得高压缩比,而无损压缩通过消除统计冗余完全保留数据。最后介绍了混合编码(如JPEG2000)的平衡策略。文章还提出了压缩效果评价标准(冗余度、编码效率、保真度),为不同应用场景的压缩方案选择

2025-08-08 15:23:47 1111

原创 【数字图像处理系列笔记】Ch05:傅里叶变换与频率域滤波

摘要:傅里叶变换为图像处理提供了频率域分析的新视角,将图像从空间域转换到频率域后,低频成分反映整体背景,高频成分对应细节和噪声。通过离散傅里叶变换(DFT)和快速算法(FFT),可实现高效计算。频率域滤波利用低通、高通和带通/带阻滤波器选择性地修改频率成分,分别用于图像去噪、锐化和周期性噪声去除。虽然计算复杂度较高且需处理边缘效应,但频率域处理在医学影像、遥感分析和图像压缩等领域展现出独特优势,为复杂图像问题提供了基于数学理论的全局解决方案。(150字)

2025-08-07 12:38:21 1010 5

原创 【数字图像处理系列笔记】Ch04:灰度变换与空间域图像增强(1)

图像增强技术通过灰度变换函数和直方图处理改善图像质量。主要方法包括:线性变换(调整对比度和亮度)、对数变换(增强暗部细节)、幂律变换(伽马校正)、分段线性变换(选择性增强)以及阈值处理(二值化)。直方图均衡化利用累积分布函数均匀化灰度分布,显著提升全局对比度,适用于低对比度图像增强。此外,比特平面提取可分离图像的主要轮廓与细节纹理。这些空域增强方法直接作用于像素或其邻域,广泛应用于医学影像、遥感图像处理等领域,为后续分析和视觉呈现提供优化基础。

2025-08-07 12:37:56 855

原创 【数字图像处理系列笔记】Ch04:灰度变换与空间域图像增强(2)

《空域滤波基础与应用摘要》 空域滤波是图像处理的核心技术,通过卷积运算直接处理像素邻域。主要分为平滑(低通)和锐化(高通)两类。平滑滤波(均值/高斯/中值)通过加权平均或中值运算去除噪声,但会模糊细节;锐化滤波(拉普拉斯/Sobel)利用微分运算增强边缘,但会放大噪声。关键参数包括滤波器尺寸(3×3至7×7)和权重分布(高斯核σ值)。实际应用需权衡去噪与细节保留,常见组合策略如"先高斯去噪再拉普拉斯锐化"。典型场景包括医学影像去噪(中值滤波)、边缘检测(Sobel)和图像增强(非锐化掩模

2025-08-06 14:30:13 973 4

原创 【数字图像处理系列笔记】Ch03:图像的变换

本文介绍了图像处理中的位置变换、形状变化以及数值与逻辑运算。位置变换包括平移、镜像和旋转;形状变化涉及图像的缩小、放大和错切操作。数值运算包含加减乘除等基础算术运算和混合运算,用于图像增强与校正;逻辑运算基于布尔代数,包括与、或、非、异或等操作,主要用于二值图像处理。文中提供了具体算法公式和Python代码示例,展示了这些方法在图像叠加、运动检测、车牌提取等实际应用中的实现过程。这些基础操作为图像分析和计算机视觉任务提供了关键技术支撑。

2025-08-06 14:29:37 999 1

原创 【数字图像处理系列笔记】Ch02:数字图像处理基础

本文系统阐述了数字图像处理中的采样与量化技术。第一部分详细解析了图像采样(空间离散化)和量化(数值离散化)的基本概念,包括采样率、奈奎斯特定理等核心要素,并通过示例展示了不同采样率对图像质量的影响。重点介绍了非统一采样(自适应采样、随机采样等)和非统一量化(Max-Lloyd量化、对数量化等)的数学表示、特性对比及典型应用场景。第二部分概述了数字图像的表示方式,包括空间分辨率和频率分辨率。第三部分简要说明影响数字图像质量的主要因素。第四部分探讨了像素间的基本关系,包括邻域定义和连通性判断方法。全文通过理论分

2025-08-05 15:48:52 884

原创 【数字图像处理系列笔记】Ch01:绪论

《数字图像处理课程概述》摘要 本课程以冈萨雷斯教材为基础,系统讲解数字图像处理的核心内容。课程涵盖图像定义(模拟/数字图像)、数字图像处理的基本概念(获取、存储、分析等)及其三个研究层次(处理、分析、理解)。重点介绍了数字图像处理系统的软硬件组成,包括图像传感器等关键单元。课程还探讨了该技术在目标检测、图像增强等领域的应用,并指出未来智能化、高分辨率、实时处理和多模态融合的发展趋势。通过矩阵化表达和像素级分析,帮助学习者掌握数字图像处理的原理与方法。

2025-08-05 15:47:30 359

原创 【自然语言处理】——基于预训练模型的方法【复习篇1】

本文探讨了自然语言处理(NLP)的多个关键问题。首先比较了基于规则和基于机器学习的方法,前者准确但维护成本高,后者泛化能力强但需要大量数据。其次介绍了如何扩展独热编码引入词性、词义特征,以及SVD方法如何捕捉词间高阶关系。针对计算困惑度时零概率问题,提出了平滑和插值等解决方案。在分词算法方面,分析了逆向最大匹配算法和子词切分算法的优劣。最后讨论了序列标注在句法分析中的应用,并提供了中文分词系统的评价指标(精确度、召回率、F1值)的Python实现代码。这些内容涵盖了NLP从基础理论到实际应用的多个重要方面。

2025-05-30 16:12:15 1033 1

原创 卡诺图化简最小项表达式

本文介绍了两个四变量逻辑函数的卡诺图化简方法。给定F₁和F₂的最小项表达式,通过构建4×4卡诺图(AB表示行,CD表示列),运用相邻项合并原则进行化简。F₁化简为A'B'C'+BD+A'BC,F₂化简为C'D'+A'BD+BCD'。文章详细展示了卡诺图绘制过程、画圈策略及最终最简表达式,并提供了Python代码实现卡诺图的自动构建和显示功能,验证了化简结果的正确性。

2025-01-06 20:52:26 400 2

原创 NO.3 《机器学习期末复习篇》以题(问答题)促习(人学习),满满干huo,大胆学大胆补!

核函数技术是一种在支持向量机(SVM)和其他机器学习算法中常用的方法,它的核心思想是通过一个映射函数将低维数据映射到更高维空间,从而使原本线性不可分的数据变得线性可分。我们并不直接计算数据在高维空间中的位置,而是通过核函数计算两个数据点在高维空间中的内积。:划分数据集后,基尼指数反映了划分后子集的纯度变化。表示类别的重要性,平方项让高概率类别的贡献更大,而低概率类别的贡献更小。半朴素贝叶斯分类器是对朴素贝叶斯的扩展和改进,放松了特征条件独立性的假设,允许特征之间存在某种依赖关系。)转化为齐次线性模型。

2025-01-06 20:51:32 1470 1

原创 NO.2 《机器学习期末复习篇》以题(问答题)促习(人学习),满满干huo,大胆学大胆补!

机器学习期末复习

2025-01-05 11:58:03 1112

原创 NO.1 《机器学习期末复习篇》以题(问答题)促习(人学习),满满干huo,大胆学大胆补!

机器学习期末复习,用准课后练习!!

2025-01-05 11:57:14 1542

原创 【线性回归分析】:基于实验数据的模型构建与可视化

在数据分析领域,线性回归是一种基础而强大的工具,用于探究两个或多个变量之间的关系。通过给定的数据集,我们可以构建一个线性模型来预测目标变量(y)如何随着输入变量(x)的变化而变化。CV九段手将演示如何使用Python中的NumPy和Matplotlib库读取数据、计算线性回归参数,并可视化结果。该文件包含了两行数据,第一行是自变量x的值,第二行是因变量y的值。最后一步是将原始数据点以及拟合出的最佳直线在同一张图上展示出来,这有助于直观地理解线性模型的效果。最近啊,我的机器学习老师也是开始布置实验了,

2024-10-17 22:38:44 1380 94

原创 U2D【Move and Jump】

在Unity中控制角色的简单移动和跳跃可以通过多种方法实现。

2024-10-15 08:49:34 1386 63

原创 【计算机组成原理】实验一:运算器输入锁存器数据写实验

利用CP226实验箱上的K16~K23二进制拨动开关作为DBUS数据输入端,其它开关作为控制信号的输入端,将通过K16~K23设定的数据写入运算器输入锁存器A和W。数据在CLK的上升沿被写入74HC574锁存器。这是因为74HC574是D触发器,数据在时钟上升沿传递至输出,并保持不变。实验涉及的主要集成电路芯片是74HC574,这是一种用于锁存运算器输入端数据的8位D触发器。将K23~K16置零,按下[RST]按钮,并通过[TV/ME]键进入手动模式。通过本实验,学习并掌握。

2024-09-23 18:28:04 2232 64

原创 Pycharm的安装与Conda环境的配置

访问PyCharm 官网。选择适用于你操作系统的 PyCharm 社区版 (Community Edition) 下载链接。下载完成后,运行安装程序并按照提示完成安装过程。

2024-09-09 16:18:06 4615 69

原创 Anaconda和pytorch的安装过程

Anaconda和pytorch的安装过程

2024-09-07 10:08:06 2318 65

原创 Unity中的键位KeyCode

Unity中的键位KeyCode使用情况

2024-09-04 08:23:48 6341 65

原创 Unity【Colliders碰撞器】和【Rigibody刚体】的应用——小球反弹效果

可以选择多边形碰撞器(Polygon Collider)或盒形碰撞器(Box Collider),以提供更准确的边界框信息,特别是在将2D角色放入3D场景中时,可以使用物理引擎使角色与3D平面发生碰撞。如果设置为true,则该碰撞器仅用于检测碰撞事件,而不影响物理模拟。:复合碰撞器可以将多个碰撞器合并为单个碰撞器,这在大型地图等情况下尤其有效,因为它可以减少碰撞检测的计算量,从而提高性能。的游戏对象与另一个带有碰撞器的游戏对象发生碰撞时,Unity会自动处理这些碰撞事件,并更新物体的位置和速度。

2024-09-03 00:41:58 7464 72

原创 jupter_notebook简单介绍以及安装使用

Jupyter如果工作主要涉及数据科学、机器学习、教育或需要创建可共享的交互式文档,Jupyter Notebook 是一个很好的选择。如果需要一个全面的开发环境来构建和维护大型的 Python 应用程序,或者正在从事软件工程项目,PyCharm 会更适合哦!

2024-09-02 09:55:28 2119 21

原创 线性代数之正定矩阵【数据分析处理】

一个n阶的实对称矩阵A被称为正定矩阵,如果对于所有的非零向量x,都有x^T A x > 0。这里的x^T表示向量x的转置。换句话说,正定矩阵的每个特征值都是正的。

2024-09-02 09:48:09 2076 16

原创 线性代数之相似矩阵、二次型

常用判定二次型正定的方法:(1)定义法:系数都大于零,主对角线元素都大于零(2)特征值全大于零(3)顺序主子式全大于零。

2024-09-01 01:57:24 1724 26

原创 线性代数之行列式、矩阵和向量组

1、了解矩阵的定义,熟悉几类特殊矩阵(单位矩阵,对角矩阵,上、下三角形矩阵,对称矩阵,可逆矩阵,伴随矩阵,正交矩阵)的特殊性质。向量组的极大无关组的概念(与向量空间的基、齐次线性方程组的基础解系的关系)及其求法。向量、向量组的线性表示:设有单个向量b,向量组A ,向量组 B。2、掌握向量组线性相关、线性无关的定义,并会判断一个具体向量组的线性相关性。3、知道向量组的秩与矩阵的秩的关系,会求一个具体向量组的秩及其极大无关组。1、掌握向量组、线性组合和线性表示的概念,知道两个向量组等价的含义。

2024-09-01 01:39:03 1496 16

原创 线性代数之线性方程组

齐次和非齐次线性方程组的例子,我们将使用 Python 和 NumPy 来求解这些例子。

2024-08-31 07:53:27 3946 32

原创 2d像素游戏基本架构

另一方面,虚幻引擎在2D游戏开发中也有所加强,尤其是在虚幻2D框架的推出后,它将强大的虚幻3D引擎技术应用于2D游戏开发中,提供了更高的性能和更强大的定制能力。在曲线视图中,可以显示关键帧之间的插值曲线,从而提供更强大的控制权。:在Unity的动画编辑器中,用户可以在时间轴上创建关键帧,这些关键帧记录了角色在特定时间点的特定状态。:如果需要重新绑定2D动画的骨骼,可以在动画编辑器中选中所需的动画剪辑,然后选择“Sprite Editor”菜单下的“Bone Editor”选项进行重新绑定。

2024-08-30 08:17:16 2465 23

原创 《王者荣耀》游戏玩法与部分机制分析

王者荣耀》是一款以竞技对战为核心的MOBA类手游,通过丰富的游戏模式和复杂的匹配机制,为玩家提供了公平、刺激、富有挑战性的对战体验。理解并适应这些机制,不仅能提升你的游戏水平,也能帮助你更好地享受《王者荣耀》带来的竞技乐趣。边境突围模式更注重个人生存和资源管理,玩家需要在广阔的战场上寻找机会击败对手以生存到最后。而五军对决模式则更强调团队合作和策略,玩家需要在多个队伍之间进行竞争,抢夺星数以获得胜利。法术吸血机制和技能缓存机制在《王者荣耀》中各自有着独特的计算方式和作用。

2024-08-29 09:53:18 4990 7

原创 游戏开发设计模式之桥接模式

桥接模式(Bridge Pattern)是一种结构型设计模式,它将抽象部分与其实现部分分离,使它们都可以独立变化。这种模式通过组合关系代替继承关系来实现,从而降低了抽象和实现这两个可变维度的耦合度。在游戏开发中,桥接模式可以用于管理不同角色、功能或对象之间的关系,使代码更加灵活和可维护。桥接模式的核心思想是“抽象与现实分离”,在代码设计上也是要针对抽象化进行设计与编程。例如,在游戏开发中,可以使用桥接模式将游戏引擎和场景分离开来,使得用户可以在不同的场景之间进行切换,而不需要修改游戏引擎的代码。

2024-08-28 18:31:38 1226 16

原创 游戏开发设计模式之外观模式

首先,需要定义一个外观角色(Facade),这个角色将作为游戏引擎的入口点。外观角色将提供一个统一的接口,使得客户端(如游戏开发者)可以更容易地与游戏引擎的各个子系统进行交互。

2024-08-28 09:56:54 1395 9

原创 游戏开发设计模式之模板方法模式

在游戏开发中,模板方法模式可以用于定义游戏中的角色行为。不同的角色可以通过继承来实现特定的行为。例如,一个游戏角色可能需要执行一系列的步骤,如初始化、执行任务、完成任务等。这些步骤可以被定义为模板方法,而具体的实现细节则由子类来完成。

2024-08-28 09:47:21 1018 4

原创 游戏开发设计模式之装饰模式

装饰模式(Decorator Pattern)是一种结构型设计模式,它允许在不改变对象接口的情况下动态地为对象添加功能。这种模式通过创建一个包装对象来实现,该包装对象包含被装饰对象的引用,并在运行时根据需要动态地添加或删除功能。在游戏开发中,装饰模式的应用非常广泛。例如,装饰模式可以用于实现游戏角色的变身功能。在《恶魔战士》中,游戏角色“莫莉卡·安斯兰”可以变身成不同的形态,如头顶及背部延伸出蝙蝠状飞翼的女妖,或者穿着漂亮外衣的少女。通过装饰模式,可以动态地为角色添加不同的外观和行为,而

2024-08-27 08:34:21 1701 36

原创 游戏开发设计模式之原型模式

原型模式是一种强大而灵活的设计模式,通过克隆现有对象来创建新对象,避免了频繁的实例化过程。它在游戏开发中非常有用,特别是在需要创建大量相似对象的情况下。通过使用原型模式,可以提高开发效率,减少代码重复,并优化资源使用。原型模式适合于需要高性能和简化创建过程的场景,但需要注意安全性问题和内存消耗。建造者模式适合于需要灵活构建复杂对象的场景,但可能会导致代码冗余和难以理解。适配器模式适合于需要接口转换的场景,但可能会导致过度设计和性能开销。

2024-08-27 08:22:24 1566 3

原创 Java的简单介绍(结尾附上了安装教程)

Java是一种广泛使用的计算机编程语言,由Sun Microsystems公司于1995年推出,现为Oracle公司所有。Java是一种面向对象的编程语言,具有简单性、健壮性、安全性、跨平台性、多线程支持和自动垃圾回收机制等特点。

2024-08-26 15:58:43 2470 20

原创 游戏开发设计模式之中介者模式

中介者模式定义了一个中介对象来封装一系列对象之间的交互,使得各对象之间不需要显式地相互引用,从而使其耦合松散,且可以独立地改变它们之间的交互。Mediator(中介者):抽象中介者,是中介者的接口。ConcreteMediator(具体中介者):实现中介者接口,协调同事对象之间的通信。Colleague(同事):抽象同事,是同事接口。ConcreteColleague(具体同事):实现同事接口,通过中介者与其它同事通信。中介者模式和观察者模式都是为了实现参与者之间的解耦,简化交互关系。

2024-08-26 09:36:42 1017 3

原创 机器学习速成第二集——监督学习之回归+数据处理(实践部分)!

例如,考虑使用“Rent Index”,“Groceries Index”,“Restaurant Price Index”,“Local Purchasing Power Index”等作为特征。例如,这下面是我从Kaggle网站下载一个数据集,对其进行预处理、特征工程、EDA,并最终训练一个简单的机器学习模型。:检查模型的显著性和拟合优度,包括R²值、F检验、t检验等统计指标,以评估模型的有效性。:利用数据拟合回归模型,得到回归系数(β0和β1),其中β0是截距,β1是斜率。

2024-08-26 00:00:00 2087 67

原创 游戏开发设计模式之命令模式

命令模式的核心思想是将一个请求封装成一个对象,这样请求的发送者和接收者就可以独立地变化。Command(命令)接口:定义执行操作的接口。ConcreteCommand(具体命令):实现Command接口,并执行具体的操作。Invoker(调用者):调用具体命令对象执行操作。Receiver(接收者):执行具体操作的对象。命令模式适用于需要解耦请求发送者和接收者、支持命令的排队和撤销操作的场景。观察者模式适用于需要实现事件驱动系统、易于扩展和维护的场景。状态模式。

2024-08-25 13:53:41 1142 7

[深度学习基础]-基于线性回归的波士顿房价预测

[深度学习基础]-基于线性回归的波士顿房价预测

2025-03-02

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除