自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(3097)
  • 收藏
  • 关注

原创 【风电功率预测】【多变量输入单步预测】基于TCN的风电功率预测研究附Matlab代码

在全球能源结构加速向清洁化、低碳化转型的大趋势下,风力发电凭借其可再生、无污染的特性,装机容量持续快速增长。然而,风电功率受风速、风向、气温等多种因素综合影响,呈现出显著的随机性和波动性,这给电力系统的稳定运行、调度规划以及电力供需平衡带来了巨大挑战。精准的风电功率预测是保障电力可靠供应、优化能源配置的关键,时序卷积网络(TCN)在时序数据处理方面具有独特优势,本文构建基于 TCN 的风电功率预测模型,利用多变量输入进行单步预测,旨在提高风电功率预测的准确性与可靠性。关键词风电功率预测;多变量输入;

2025-06-11 23:55:55 619

原创 【风电功率预测】【多变量输入单步预测】基于BiTCN-SVM的风电功率预测研究附Matlab代码

在全球能源结构向清洁化转型的浪潮中,风力发电凭借可再生、无污染等优势,装机规模不断攀升。但风电功率受风速、风向、气温等多因素干扰,呈现出显著的随机性与波动性,严重影响电力系统稳定运行与调度规划。精确的风电功率预测是保障电力可靠供应、优化能源配置的关键。双向时序卷积网络(BiTCN)在时序特征提取上独具优势,支持向量机(SVM)在回归任务中表现出色。本文构建基于 BiTCN - SVM 的风电功率预测模型,利用多变量输入进行单步预测,致力于提升风电功率预测的准确性与可靠性。关键词风电功率预测;多变量输入。

2025-06-11 23:54:08 319

原创 【风电功率预测】【多变量输入单步预测】基于CNN-LSTM的风电功率预测研究附Matlab代码

在全球能源结构加速向清洁化、低碳化转型的进程中,风力发电作为可再生能源的重要组成部分,其装机规模持续快速增长。然而,风电功率受风速、风向、气温等多种因素综合影响,呈现出显著的随机性与波动性,这给电力系统的稳定运行、调度规划以及电力供需平衡带来了巨大挑战。精确的风电功率预测是实现电力系统优化调度、保障电力可靠供应的关键环节。

2025-06-11 23:51:43 689

原创 【风电功率预测】【多变量输入单步预测】基于TCN-GRU-Attention的风电功率预测研究附Matlab代码

在全球能源结构加速向绿色低碳转型的趋势下,风力发电作为可再生能源的关键力量,装机规模持续攀升。但风电功率受风速、风向、气温等多因素综合影响,呈现出强烈的随机性与波动性,给电力系统的稳定运行、调度规划带来巨大挑战。精确的风电功率预测是保障电力可靠供应、优化能源配置的关键。时序卷积网络(TCN)在时序特征提取上表现优异,门控循环单元(GRU)擅长处理序列数据,注意力机制(Attention)能聚焦关键信息。

2025-06-11 23:48:34 612

原创 【风电功率预测】【多变量输入单步预测】基于CNN-GRU的风电功率预测研究附Matlab代码

在全球积极推动能源结构转型的背景下,风力发电作为可再生能源的重要组成部分,其装机规模不断扩大。但风电功率受风速、风向、气温等多因素影响,呈现出显著的随机性与波动性,给电力系统稳定运行和调度带来巨大挑战。卷积神经网络(CNN)在特征提取方面表现出色,门控循环单元(GRU)擅长处理时序数据,本文构建基于 CNN - GRU 的风电功率预测模型,利用多变量输入进行单步预测,旨在提升风电功率预测的准确性,为电力系统优化调度提供支持。关键词风电功率预测;多变量输入;单步预测;CNN;GRU一、引言。

2025-06-11 23:45:59 561

原创 【风电功率预测】【多变量输入单步预测】基于RVM-Adaboost的风电功率预测研究附Matlab代码

在全球能源结构加速向清洁化转型的大背景下,风力发电作为可再生能源的重要组成部分,其装机容量持续快速增长。然而,风电功率受风速、风向、气温等多种因素的综合影响,呈现出显著的随机性和波动性,这给电力系统的稳定运行、调度规划以及电力供需平衡带来了巨大挑战。准确的风电功率预测是实现电力系统优化调度、保障电力可靠供应的关键环节。相关向量机(Relevance Vector Machine,RVM)作为一种基于贝叶斯框架的稀疏概率模型,在回归任务中表现出色;Adaboost 算法通过迭代训练多个弱学习器来提升整体性能。

2025-06-11 23:43:31 211

原创 【风电功率预测】【多变量输入单步预测】基于CNN-SVM的风电功率预测研究附Matlab代码

在全球积极推动能源结构向清洁化转型的进程中,风力发电作为可再生能源的重要支柱,其装机规模持续扩大。但风电功率受风速、风向、气温等多因素干扰,呈现出显著的随机性与波动性,严重影响电力系统的稳定运行与调度规划。准确的风电功率预测对电网优化资源配置、保障电力稳定供应意义重大。卷积神经网络(CNN)在特征提取方面表现卓越,支持向量机(SVM)在分类和回归任务中优势明显。本文提出基于 CNN - SVM 的风电功率预测模型,采用多变量输入进行单步预测,旨在提升风电功率预测的准确性与可靠性。关键词风电功率预测;

2025-06-11 23:40:39 623

原创 【风电功率预测】【多变量输入单步预测】基于RF-Adaboost的风电功率预测研究附Matlab代码

在全球能源结构加速向清洁能源转型的背景下,风力发电作为可再生能源的重要组成部分,装机容量持续增长。然而,风电功率受风速、风向、气温等多因素影响,具有显著的随机性和波动性,给电力系统的稳定运行与调度带来挑战。准确的风电功率预测对电网优化调度、保障电力供应至关重要。随机森林(Random Forest,RF)作为一种集成学习算法,在处理非线性数据方面表现出色;Adaboost 算法通过迭代训练提升模型性能。

2025-06-11 23:38:40 536

原创 【风电功率预测】【多变量输入单步预测】基于CNN-BiGRU的风电功率预测研究附Matlab代码

在全球积极推进能源结构清洁化转型的大背景下,风力发电作为可再生能源的重要组成部分,其装机规模持续快速扩张。然而,风电功率受风速、风向、气温、气压、湿度等众多因素的综合影响,呈现出显著的随机性与波动性特征。这种不稳定特性给电力系统的稳定运行、调度规划以及电力供需平衡带来了巨大挑战。实现高精度的风电功率预测,成为保障电力资源合理配置、提升电力系统运行效率与可靠性的关键所在。

2025-06-11 23:35:04 451

原创 【风电功率预测】【多变量输入单步预测】基于CNN-BiGRU的风电功率预测研究附Matlab代码

在全球能源结构加速向清洁化转型的当下,风电作为重要的可再生能源,其装机容量不断攀升。然而,风电功率受风速、风向、气温等多种因素干扰,呈现出强烈的随机性与波动性,给电力系统稳定运行和调度带来巨大挑战。精确的风电功率预测是实现电力资源优化配置的关键。本文提出一种基于卷积神经网络(CNN)和双向门控循环单元(BiGRU)相结合的 CNN - BiGRU 模型,用于风电功率的多变量输入单步预测。该模型利用 CNN 自动提取多变量数据的局部特征,BiGRU 挖掘数据的双向时序依赖关系,从而实现高精度的风电功率预测。

2025-06-11 23:31:05 430

原创 【风电功率预测】【多变量输入单步预测】基于CNN-BiLSTM-Attention的风电功率预测研究附Matlab代码

在全球能源转型加速推进的背景下,风电作为可再生能源的重要组成部分,其装机容量持续攀升。但风电功率受风速、风向、气温等多因素影响,呈现出强烈的随机性与波动性,给电力系统的稳定运行和调度带来严峻挑战。准确的风电功率预测是实现电力资源优化配置的关键。本文提出一种基于卷积神经网络(CNN)、双向长短期记忆网络(BiLSTM)和注意力机制(Attention)相结合的 CNN - BiLSTM - Attention 模型,用于风电功率的多变量输入单步预测。

2025-06-11 23:16:30 299

原创 【风电功率预测】【多变量输入单步预测】基于CNN-RVM的风电功率预测研究附Matlab代码

在全球能源结构加速向清洁化转型的趋势下,风电作为重要的可再生能源,其装机容量持续快速增长。然而,风电功率受风速、风向、气温等多种因素影响,呈现出显著的随机性和波动性,给电力系统的稳定运行和调度带来巨大挑战。准确的风电功率预测是实现电力系统可靠运行与高效调度的关键。本文提出一种基于卷积神经网络(CNN)与相关向量机(RVM)相结合的 CNN - RVM 模型,用于风电功率的多变量输入单步预测。该模型利用 CNN 自动提取多变量数据的深层次特征,结合 RVM 强大的回归能力,实现对风电功率的精准预测。

2025-06-11 22:58:19 302

原创 【风电功率预测】【多变量输入单步预测】基于CNN的风电功率预测研究附Matlab代码

在能源结构加速转型的当下,风电作为清洁能源的重要组成部分,其装机容量不断攀升。然而,风电功率受风速、风向、气温等多因素影响,呈现出显著的随机性与波动性,这给电网稳定运行和调度带来巨大挑战。卷积神经网络(CNN)凭借强大的特征提取能力,在处理复杂数据时表现出色。本文构建基于 CNN 的风电功率预测模型,以多变量作为输入进行单步预测,旨在通过挖掘数据特征,提高风电功率预测的准确性,为电网调度提供可靠依据。关键词风电功率预测;多变量输入;单步预测;卷积神经网络一、引言。

2025-06-11 22:52:18 511

原创 【风电功率预测】【多变量输入单步预测】基于TCN-BiGRU的风电功率预测研究附Matlab代码

在全球能源结构加速向清洁化转型的背景下,风电作为重要的可再生能源,其装机容量持续快速增长。然而,风电功率受风速、风向、气温等多种因素影响,呈现出较强的随机性和波动性,给电网的稳定运行和调度带来了巨大挑战。准确的风电功率预测是解决这一问题的关键。本文提出一种基于时间卷积网络(Temporal Convolutional Network,TCN)和双向门控循环单元(Bidirectional Gated Recurrent Unit,BiGRU)的混合深度学习模型,用于风电功率的多变量输入单步预测。

2025-06-11 22:49:57 538

原创 【风电功率预测】【多变量输入单步预测】基于SVM-Adaboost的风电功率预测研究附Matlab代码

在全球能源结构向清洁风电作为重要的可再生能源,其功率预测对电网稳定运行和能源调度至关重要。由于风电功率受风速、风向、气温、气压等多种因素影响,具有较强的随机性和波动性,采用多变量输入的单步预测方法是提高预测精度的关键。本文提出基于支持向量机(SVM)与 Adaboost 相结合的 SVM - Adaboost 模型用于风电功率预测,通过引入多变量作为输入,利用 SVM 的非线性拟合能力和 Adaboost 的集成学习优势,实现风电功率的精准预测。

2025-06-11 22:47:21 536

原创 【负荷预测】基于BiLSTM-KAN的负荷预测研究附Python代码

在智能电网数字化转型的关键阶段,精准的电力负荷预测是实现电力资源优化配置、保障电网稳定运行的核心技术。电力负荷数据受气象条件、社会经济活动、用户用电习惯等多种因素交互影响,呈现出高度复杂的非线性与动态变化特征。传统预测模型难以充分挖掘负荷数据背后的复杂关联,为此,本文创新性地提出基于 BiLSTM-KAN 的负荷预测模型,通过融合双向长短期记忆网络(BiLSTM)与知识图谱注意力网络(KAN),为负荷预测提供全新的技术路径。一、BiLSTM-KAN 模型原理1.1 BiLSTM:时序特征深度挖掘。

2025-06-10 12:46:28 553

原创 【负荷预测】基于CNN-GRU-Attention的负荷预测研究附Python代码

智能电网建设与电力市场化改革不断推进的背景下,精准的电力负荷预测是保障电网稳定运行、优化资源调度、降低运营成本的关键环节。电力负荷数据受气象条件、用户行为、经济活动等多因素影响,呈现出非线性、时变性和复杂性等特点,传统预测方法难以满足高精度预测需求。为此,本文提出基于 CNN-GRU-Attention 的负荷预测模型,通过融合卷积神经网络(CNN)、门控循环单元(GRU)和注意力机制(Attention),为负荷预测提供新的技术路径。一、CNN-GRU-Attention 模型原理。

2025-06-10 12:43:08 469

原创 【负荷预测】基于BiTCN-BiGRU的负荷预测研究附Python代码

在智能电网快速发展的背景下,电力负荷预测作为保障电网稳定运行、优化资源配置的关键环节,面临着诸多挑战。电力负荷数据具有非线性、时变性以及多源性等复杂特征,传统预测方法难以精准捕捉其变化规律。为此,本文提出基于 BiTCN-BiGRU 的负荷预测模型,通过融合双向时间卷积网络(BiTCN)与双向门控循环单元(BiGRU),为负荷预测提供新的有效途径。一、BiTCN-BiGRU 模型原理1.1 BiTCN:时间特征提取利器。

2025-06-10 12:41:27 491

原创 【负荷预测】基于CNN-BiLSTM-Attention的负荷预测研究附Python代码

在智能电网迈向数字化、智能化的进程中,精准的电力负荷预测成为平衡电力供需、保障电网稳定运行的核心技术。电力负荷数据因受气象条件、用户行为、经济活动等多因素影响,呈现出高度非线性与复杂动态变化特征,传统预测方法难以满足日益增长的预测精度需求。为此,本文提出基于 CNN-BiLSTM-Attention 的负荷预测模型,通过深度融合卷积神经网络、双向长短期记忆网络与注意力机制,探索负荷预测的新突破。一、CNN-BiLSTM-Attention 模型原理1.1 CNN:空间特征挖掘引擎。

2025-06-10 12:40:04 572

原创 【负荷预测】基于CEEMDAN-CNN-LSTM的负荷预测研究附Python代码

在智能电网建设加速推进的背景下,电力负荷预测作为保障电网稳定运行、实现资源优化配置的核心技术,面临着更高要求。电力负荷数据具有非线性、时变性和多源性等复杂特征,传统预测方法难以精准捕捉其内在规律。为此,本文提出基于 CEEMDAN-CNN-LSTM 的负荷预测模型,通过融合先进的数据分解技术、特征提取算法和时序分析模型,为负荷预测提供更高效、精准的解决方案。一、CEEMDAN-CNN-LSTM 模型原理1.1 CEEMDAN 数据分解技术。

2025-06-10 12:38:48 751

原创 【负荷预测】基于CNN-LSTM的负荷预测研究附Python代码

在智能电网蓬勃发展的当下,精准的电力负荷预测成为保障电网稳定运行、实现电力资源合理配置的关键。电力负荷数据具有高度的非线性、时变性与复杂性,传统预测方法在应对这些特性时往往存在局限性。为此,本文提出基于 CNN-LSTM 的负荷预测模型,通过将卷积神经网络(CNN)与长短期记忆网络(LSTM)相结合,为负荷预测提供新的高效解决方案。一、CNN-LSTM 模型原理1.1 CNN:数据特征提取先锋卷积神经网络(CNN)以局部感知和权值共享两大特性,在数据特征提取领域表现卓越。

2025-06-10 12:37:03 573

原创 【负荷预测】基于CEEMDAN-CNN-BiGRU的负荷预测研究附Python代码

在电力系统智能化转型的背景下,准确的电力负荷预测是实现电网稳定运行、优化资源调度的核心环节。电力负荷数据具有显著的非线性、时变性和复杂性,传统预测方法难以精准捕捉其变化规律。为此,本文提出基于 CEEMDAN-CNN-BiGRU 的负荷预测模型,通过融合先进的数据分解技术、特征提取算法和时序分析模型,为负荷预测提供更高效、精准的解决方案。一、CEEMDAN-CNN-BiGRU 模型原理1.1 CEEMDAN 数据分解技术。

2025-06-10 12:35:41 608

原创 【负荷预测】基于CNN-BiLSTM-Attention的负荷预测研究附Python代码

在智能电网建设持续推进的当下,精准的电力负荷预测是保障电网稳定运行、优化资源调度的关键。电力负荷数据具有高度的非线性与复杂性,传统预测方法难以有效捕捉其内在规律。为此,本文提出基于 CNN-BiLSTM-Attention 的负荷预测模型,通过融合卷积神经网络、双向长短期记忆网络与注意力机制,为负荷预测提供新的技术路径。一、CNN-BiLSTM-Attention 模型原理1.1 CNN:空间特征提取核心卷积神经网络(CNN)凭借局部感知与权值共享的特性,在数据特征提取方面表现卓越。

2025-06-10 12:27:22 719

原创 【负荷预测】基于CEEMDAN-CNN-BiLSTM的负荷预测研究附Python代码

在电力系统智能化与高效化发展进程中,负荷预测是实现电力资源合理分配、保障电网稳定运行的关键环节。电力负荷数据具有非线性、时变性和复杂性等特点,传统预测方法难以精准捕捉其变化规律。为此,本文提出基于 CEEMDAN-CNN-BiLSTM 的负荷预测模型,通过多算法融合,为负荷预测提供更优解决方案。一、CEEMDAN-CNN-BiLSTM 模型原理1.1 CEEMDAN 数据分解技术CEEMDAN(自适应噪声完备集合经验模态分解)是一种先进的信号分解方法。

2025-06-10 12:25:40 654

原创 【负荷预测】基于CEEMDAN-LSTM的负荷预测研究附Python代码

在电力系统智能化转型的浪潮下,电力负荷预测作为保障电网稳定运行、实现供需平衡的核心技术,其重要性愈发凸显。电力负荷数据具有显著的非线性、时变性和复杂性,传统预测方法在应对这些特性时往往力不从心。为此,本文提出基于 CEEMDAN-LSTM 的负荷预测模型,通过将先进的数据分解技术与强大的深度学习模型相结合,为负荷预测提供更精准、有效的解决方案。一、CEEMDAN-LSTM 模型原理1.1 CEEMDAN 数据分解技术。

2025-06-10 12:23:41 512

原创 【负荷预测】基于Gradient-boosting的负荷预测研究附Python代码

在智能电网快速发展与电力需求日益复杂的背景下,准确的电力负荷预测是保障电网稳定运行、优化资源配置的关键环节。传统预测方法在处理非线性、多变的负荷数据时,往往难以达到理想效果。而 Gradient-boosting(梯度提升)算法凭借其强大的拟合能力与集成学习优势,为负荷预测提供了新的思路与方向。本文深入探讨基于 Gradient-boosting 的负荷预测方法,分析其原理、应用过程及实际效果。一、Gradient-boosting 算法原理剖析1.1 集成学习基础。

2025-06-10 12:22:31 750

原创 【没发表过的创新点】【多变量输入单步预测】基于CEEMDAN-VMD-CNN的风电功率预测研究附Matlab代码

双碳” 目标的驱动下,风电作为清洁能源的重要组成部分,其发电规模持续扩大。然而,风电功率的随机性和波动性给电网稳定运行带来挑战,精准的风电功率预测成为关键。本文创新性地提出 基于 CEEMDAN-VMD-CNN-BiLSTM 的多变量输入单步预测模型 ,通过算法融合与技术创新,为风电功率预测提供新方案。一、创新模型架构解析1.1 CEEMDAN 与 VMD 联合数据分解传统的单一分解方法在处理复杂风电功率数据时,难以全面捕捉数据特征。

2025-06-10 12:20:17 802

原创 【没发表过的创新点】基于CEEMDAN-VMD-CNN-BILSTM的风电功率预测研究附Matlab代码

在 “双碳” 目标的驱动下,风电作为清洁能源的重要组成部分,其发电规模持续扩大。然而,风电功率的随机性和波动性给电网稳定运行带来挑战,精准的风电功率预测成为关键。本文创新性地提出 基于 CEEMDAN-VMD-CNN-BiLSTM 的多变量输入单步预测模型 ,通过算法融合与技术创新,为风电功率预测提供新方案。一、创新模型架构解析1.1 CEEMDAN 与 VMD 联合数据分解传统的单一分解方法在处理复杂风电功率数据时,难以全面捕捉数据特征。

2025-06-10 12:15:11 687

原创 【负荷预测】基于CEEMDAN-CNN-BiLSTM-Attention的负荷预测研究附Python代码

在能源领域智能化、高效化的发展浪潮中,电力负荷预测是电网稳定运行与资源合理配置的核心环节。传统预测方法在应对复杂多变的负荷数据时,常面临精度不足的难题。为此,本文提出基于CEEMDAN-CNN-BiLSTM-Attention的负荷预测模型,通过多算法融合与注意力机制的引入,实现对负荷数据更精准的分析与预测。一、CEEMDAN-CNN-BiLSTM-Attention 模型深度解析1.1 CEEMDAN:数据分解基石。

2025-06-10 12:13:04 633

原创 【多变量输入单步预测】基于CEEMDAN-CNN-BiLSTM的风电功率预测研究附Matlab代码

在全球积极推动能源转型与可持续发展的大背景下,风电作为一种清洁、可再生的能源,在能源结构中的地位愈发关键。随着风电装机容量在全球范围内的迅速攀升,其在能源供应体系中所占的比重也日益增加。据相关数据显示,截至 [具体年份],全球风电累计装机容量已突破 [X] GW,成为了能源领域中不可忽视的重要力量。在我国,风电同样发展迅猛,众多大型风电基地如酒泉千万千瓦级风电基地、蒙东风电基地等相继建成,为我国能源结构的优化做出了巨大贡献。风电功率预测对于电网调度和电力系统的稳定运行起着举足轻重的作用。

2025-06-10 12:10:47 852

原创 【配电网规划】SOCPR和基于线性离散最优潮流(OPF)模型的配电网规划( DNP )附Matlab代码

一、研究背景与意义随着分布式电源(如光伏、风电)的大规模接入以及电动汽车等新型负荷的快速增长,配电网的结构和运行特性发生了显著变化,其规划面临着更高的复杂性和不确定性。传统的配电网规划方法难以适应这种变化,无法有效解决分布式电源接入带来的电压波动、潮流阻塞等问题。因此,寻求更先进、更有效的配电网规划模型和方法至关重要。二阶锥规划松弛(SOCPR)和线性离散最优潮流(OPF)模型在处理复杂约束和优化目标方面具有独特优势,能够为配电网规划提供更精准的解决方案。

2025-06-09 20:23:44 751

原创 【雷达】基于Matlab的雷达SAR成像仿真附Matlab代码

一、研究背景合成孔径雷达(Synthetic Aperture Radar,SAR)作为一种高分辨率、全天时、全天候的微波遥感成像技术,在地形测绘、灾害监测、军事侦察、海洋观测等众多领域发挥着不可替代的重要作用。随着 SAR 技术的不断发展,新体制、新算法层出不穷,对其成像性能的研究与优化需求愈发迫切。通过雷达 SAR 成像仿真,能够在不依赖实际飞行试验的情况下,快速验证成像算法的有效性,分析系统参数对成像质量的影响,降低研发成本与风险,为 SAR 系统的设计、优化和应用提供有力支撑。

2025-06-09 20:21:05 529

原创 【电力系统】计及调峰主动性的风光水火储多能系统互补协调优化调度附Matlab代码

一、研究背景与意义在全球能源转型与 “双碳” 目标的驱动下,以风能、太阳能为代表的可再生能源发电规模持续扩大。然而,风光能源具有随机性、间歇性和波动性的特点,大规模接入电网后,给电力系统的稳定运行带来了巨大挑战,其中调峰问题尤为突出。传统的火电虽然具备一定调峰能力,但存在能耗高、污染大的问题,难以满足低碳环保的要求;水电受自然条件制约,调峰能力有限且存在季节性波动;单一储能系统的容量和响应速度也存在局限性。

2025-06-09 20:19:42 673

原创 【单变量输入多步预测】基于CNN-BiGRU的风电功率预测研究附Matlab代码

一、研究背景与意义在全球能源结构加速向清洁能源转型的大背景下,风力发电凭借其清洁、可再生的特性,成为电力供应的重要组成部分,装机容量持续快速增长。然而,风电功率受风速、风向、气温、气压等自然因素影响,具有显著的随机性和间歇性。这种不稳定特性给电力系统的调度计划制定、稳定运行保障以及电力市场交易带来诸多挑战。精确的风电功率预测,能够助力电力系统科学规划发电计划,合理调配资源,有效降低运营成本,同时提高电网对风电的消纳能力,减少弃风现象,推动清洁能源的高效利用。

2025-06-09 20:16:26 745

原创 【单变量输入多步预测】基于CNN-BiLSTM-Attention的风电功率预测研究附Matlab代码

一、研究背景与意义在全球能源结构加速向清洁能源转型的大趋势下,风力发电凭借其清洁、可再生的特性,成为电力供应的重要组成部分,装机容量持续快速增长。然而,风电功率受风速、风向、气温、气压等自然因素影响,具有显著的随机性和间歇性。这种不稳定特性给电力系统的调度计划制定、稳定运行保障以及电力市场交易带来诸多挑战。精确的风电功率预测,能够助力电力系统科学规划发电计划,合理调配资源,有效降低运营成本,同时提高电网对风电的消纳能力,减少弃风现象,推动清洁能源的高效利用。

2025-06-09 20:11:52 956

原创 【单变量输入多步预测】基于TCN-BiGRU的风电功率预测研究附Matlab代码

一、研究背景与意义在全球能源结构加速向清洁能源转型的大趋势下,风力发电凭借其清洁、可再生的特性,成为电力供应的重要组成部分,装机容量持续快速增长。然而,风电功率受风速、风向、气温、气压等自然因素影响,具有显著的随机性和间歇性。这种不稳定特性给电力系统的调度计划制定、稳定运行保障以及电力市场交易带来诸多挑战。精确的风电功率预测,能够助力电力系统科学规划发电计划,合理调配资源,有效降低运营成本,同时提高电网对风电的消纳能力,减少弃风现象,推动清洁能源的高效利用。

2025-06-09 20:09:48 699

原创 【单变量输入多步预测】基于TCN-BiGRU的风电功率预测研究附Matlab代码

一、研究背景与意义在全球能源结构加速向清洁能源转型的大趋势下,风力发电凭借其清洁、可再生的特性,成为电力供应的重要组成部分,装机容量持续快速增长。然而,风电功率受风速、风向、气温、气压等自然因素影响,具有显著的随机性和间歇性。这种不稳定特性给电力系统的调度计划制定、稳定运行保障以及电力市场交易带来诸多挑战。精确的风电功率预测,能够助力电力系统科学规划发电计划,合理调配资源,有效降低运营成本,同时提高电网对风电的消纳能力,减少弃风现象,推动清洁能源的高效利用。

2025-06-09 20:08:03 665

原创 【单变量输入多步预测】基于CNN-LSSVM的风电功率预测研究附Matlab代码

一、研究背景与意义在全球积极推动能源结构转型,大力发展清洁能源的大背景下,风力发电凭借其清洁、可再生的特性,成为电力供应的重要组成部分,装机容量持续快速增长。然而,风电功率受风速、风向、气温、气压等自然因素影响,具有显著的随机性和间歇性。这种不稳定特性给电力系统的调度计划制定、稳定运行保障以及电力市场交易带来诸多挑战。精确的风电功率预测,能够助力电力系统科学规划发电计划,合理调配资源,有效降低运营成本,同时提高电网对风电的消纳能力,减少弃风现象,推动清洁能源的高效利用。

2025-06-09 20:04:15 555

原创 【单变量输入多步预测】基于CNN-LSTM的风电功率预测研究附Matlab代码

一、研究背景与意义在全球能源结构加速向清洁能源转型的大趋势下,风力发电作为重要的可再生能源发电方式,其装机容量不断攀升,在电力供应体系中的地位愈发关键。然而,风电功率受风速、风向、气温等自然因素影响,具有显著的随机性和间歇性。这种不稳定特性给电力系统的调度、稳定运行以及电力市场交易带来巨大挑战。精确的风电功率预测,有助于电力系统科学规划发电计划、优化资源配置、降低运营成本,同时提高电网对风电的消纳能力,减少弃风现象,推动清洁能源的高效利用。

2025-06-09 20:02:04 821

原创 【单变量输入多步预测】基于TCN-BiGRU-Attention的风电功率预测研究附Matlab代码

一、研究背景与意义在全球能源转型加速推进的当下,风力发电作为清洁能源的重要组成部分,装机规模持续扩大,在电力供应体系中的地位愈发重要。然而,风电功率受风速、风向、气温、气压等自然因素影响,呈现出显著的随机性和间歇性。这种不稳定特性给电力系统的调度运行、资源配置以及电力市场交易带来诸多挑战。精确的风电功率预测,有助于电力系统科学制定发电计划、优化资源分配、降低运营成本,同时提升电网对风电的消纳能力,减少弃风现象,推动清洁能源的高效利用。

2025-06-09 19:58:51 864

cumcm2007a.zip

cumcm2007a

2024-12-08

cumcm2004c.zip

cumcm2004c

2024-12-08

winners2005draft.doc

winners2005draft

2024-12-08

自组织人工神经网络在棉花烂铃病流行趋势预报中的应用.pdf

自组织人工神经网络在棉花烂铃病流行趋势预报中的应用

2024-12-08

winner2004.doc

winner2004

2024-12-08

cumcm2007b.zip

cumcm2007b

2024-12-08

cumcm2007d.zip

cumcm2007d

2024-12-08

cumcm2006a.zip

cumcm2006a

2024-12-08

cumcm2007c.zip

cumcm2007c

2024-12-08

cumcm2006d.zip

cumcm2006d

2024-12-08

cumcm2003c.zip

cumcm2003c

2024-12-08

用神经网络对水稻飞虱鸣声进行模式分类.pdf

用神经网络对水稻飞虱鸣声进行模式分类

2024-12-08

用聚类分析和人工神经网络解析漆器漆膜裂解色谱图.pdf

用聚类分析和人工神经网络解析漆器漆膜裂解色谱图

2024-12-08

平面三次曲线等距线近似求解算法.pdf

平面三次曲线等距线近似求解算法

2024-12-08

基于神经网络的自适应图像分割.pdf

基于神经网络的自适应图像分割

2024-12-08

06全国赛B题2等奖.doc

06全国赛B题2等奖

2024-12-08

神经网络在公路交通中的应用──汽车转向仿真.pdf

神经网络在公路交通中的应用──汽车转向仿真

2024-12-08

基于神经网络的高炉异常炉况判断专家系统.pdf

基于神经网络的高炉异常炉况判断专家系统

2024-12-08

BP神经网络图象边缘检测器及其内部信息.pdf

BP神经网络图象边缘检测器及其内部信息

2024-12-08

油菜菌预报的人工神经网络方法.pdf

油菜菌预报的人工神经网络方法

2024-12-08

### 文章总结:科技赋能房地产可持续发展 - 城越2022总结报告

内容概要:本文详细介绍了中国房地产科技联盟“城越UrbanLab”的发展历程及其在推动房地产科技创新方面的作用。城越成立于2019年,由多家房地产龙头企业联合发起,旨在通过科技赋能房地产行业,实现可持续发展目标。文章探讨了中国房地产行业在绿色低碳转型中的关键要素,如能源、碳中和及劳动力,并强调了ESG理念对企业治理结构和社会责任的重要性。此外,文中还介绍了城越在综合能源服务、绿色建筑新材料、数智人力辅助等重点赛道上的创新实践,以及通过开放式创新打造地产超级生态圈的具体举措。最后,文章展示了多个成功案例,如太古地产利用数字孪生技术优化设施管理、仲量联行开发智能会议室预订系统等。 适用人群:房地产行业从业者、科技企业创始人、投资者及相关政策制定者。 使用场景及目标:①帮助房地产企业了解如何通过科技创新实现绿色低碳转型;②为初创企业提供与大型企业合作的机会,加速技术商业化;③为投资者提供行业趋势分析,指导投资决策;④为政策制定者提供参考,促进相关政策的完善和发展。 其他说明:本文不仅提供了理论框架,还结合了实际案例,展示了科技如何赋能房地产行业,推动其向更加智能化、可持续的方向发展。文中提到的多个创新项目和合作模式,为行业内的其他参与者提供了宝贵的借鉴经验。

2025-04-17

【房地产经济分析】新型冠状病毒疫情对中国房地产市场多维度影响及应对策略:零售、写字楼、工业物流与物业投资市场分析

内容概要:本文由世邦魏理仕发布,详细分析了新型冠状病毒疫情爆发对中国房地产市场的影响。文章指出,尽管湖北省尤其是武汉市的确诊病例占比较大,但得益于政府快速有效的防控措施,疫情对中国经济的冲击总体可控。文中对比了2003年非典的影响,认为此次疫情对零售物业市场的冲击最为显著,许多商场缩短营业时间甚至停业,导致客流量和营业额大幅下降。写字楼市场方面,预计一季度租赁活动将放缓,但影响可能是短期的,尤其是如果疫情能较好地控制在湖北省内。工业物流市场受影响较小,但需关注供应链中断的风险。最后,物业投资市场短期内将放缓,但货币政策的宽松可能支撑资产价格。; 适合人群:房地产从业者、投资者以及关注宏观经济与房地产市场关系的研究人员。; 使用场景及目标:①帮助房地产从业者了解疫情对各类商业地产的具体影响;②为投资者提供决策依据,评估市场风险并寻找投资机会;③为政策制定者提供参考,以便更好地应对疫情带来的经济挑战。; 其他说明:报告强调了政府快速反应的重要性,并预测疫情对经济的影响将是短期的,尤其是在有效控制的情况下。同时提醒投资者关注物流地产和医药冷链等领域的机会。

2025-04-17

### 2022年全国房地产市场半年报总结

内容概要:报告详细分析了2022年上半年全国房地产市场的表现及其背后的宏观经济背景。受疫情和经济下行压力的影响,房地产市场底层需求受到冲击,居民购房意愿显著下滑,新增贷款大幅减少。尽管多地出台了多项政策试图刺激市场,但整体效果不及预期。土地市场成交规模腰斩,溢价率持续走低,房企拿地积极性较低,尤其是大型民企面临资金压力。然而,核心城市中高端改善需求依然旺盛,如上海和杭州的部分高端项目销售良好。此外,央企国企和城投公司在土地市场上占据主导地位,而部分中小型民企则利用机会逆势拿地。展望未来,经济圈集聚效应明显,市场分化将成常态,核心城市及周边区域的投资价值较高。市场恢复的关键在于释放核心城市的改善需求,从而带动整体市场逐渐回暖。 适用人群:房地产行业从业者、投资者、政策制定者及相关研究人员。 使用场景及目标:①帮助房地产企业制定投资策略,如关注中小型民企的逆势拿地机会、发力股权融资拿地模式、聚焦经济圈内高人口密度城市;②为政策制定者提供参考,以便更好地理解市场现状及趋势,调整相关政策;③为投资者提供市场分析,辅助其做出更明智的投资决策。 其他说明:报告基于详实的数据和图表,深入剖析了当前房地产市场的复杂局面,强调了市场分化加剧、核心城市改善需求的重要性,并对未来趋势进行了预测。此外,报告还建议企业关注细分领域的投资机会,如工业地产、物流地产、养老地产等。

2025-04-17

美妆零售中国美妆消费者线上购买习惯与需求洞察:年轻女性消费趋势及线上平台策略分析书由淘美妆

该白皮书由淘美妆商友会与凯度消费者指数联合发布,旨在揭示中国美妆消费者的购买习惯与需求,帮助品牌和零售商更好地抓住线上美妆消费的新机遇。研究发现,15-34岁的年轻女性是美妆消费的主力军,她们不仅每年在美妆产品上的花费逐年增加,而且购买的品牌数量和子品类也在不断上升。线上渠道已经成为美妆消费的重要途径,尤其是淘宝和微信,占据了更大的市场份额。小众品牌通过线上平台实现了快速增长,尤其在年轻消费者中表现突出。报告还详细分析了消费者的购买链路,包括认知、搜索、种草和拔草四个阶段,指出品牌应在各个阶段积极回应消费者需求,以提高品牌曝光度和销售转化率。

2025-04-17

抖音电商:2022美妆趋势洞察报告.pdf

抖音电商:2022美妆趋势洞察报告

2025-04-01

NIFD:2024Q1房地产金融报告.pdf

NIFD:2024Q1房地产金融报告

2025-04-01

文旅行业-文旅产业新机遇来了-中国指数研究院.pdf

文旅行业-文旅产业新机遇来了-中国指数研究院

2025-03-26

Visio绘图文件中的对象嵌入与媒体关联技术解析

Visio绘图文件中的对象嵌入与媒体关联技术解析

2025-03-24

无线通信领域:空中集群网络中基于UAV轨迹优化和多尺度网络切片资源动态管理的研究

内容概要:本文针对空中集群网络中面临的两大挑战——UAV(无人驾驶飞行器)任务卸载优化和服务质量保障——进行了深入探讨并提出了两种关键机制。(1)基于动态任务负载和无人机(UAV)路径规划优化的计算任务卸载策略,它考虑了UAV位置和运动预测因素来决定何时何地执行计算任务,以便最大限度地减少资源浪费与数据传输延迟;(2)基于不同时间段变化特性设计的大时间尺度和小时间尺度下灵活高效的网络切片资源共享框架,用以维持系统稳定运行及提高整体效能。 适合人群:对于有兴趣研究或者从事无人机动态网络管理和通信优化的技术专家,以及想要进一步探索该前沿课题的学生群体。 使用场景及目标:适用于希望增强无线通信网性能、改善资源利用情况的场景;其主要目的在于降低空中集群系统的通信成本同时提升响应速度和服务水平。 阅读建议:重点在于理解如何应用提出的机制解决实际问题。注意跟随文章脉络,先从理论上把握新方法的设计思路,再看实验部分验证这些想法的有效性和实用性,最好能复现实验以加深理解和掌握关键技术要点。

2025-03-23

冷链物流路径优化与调度模型研究 - 遗传算法求解及应用

冷链物流路径优化与调度模型研究 - 遗传算法求解及应用

2025-03-18

23111130+朱家臻+附件2:任务书

23111130+朱家臻+附件2:任务书

2025-03-18

2025香港特区薪酬指南

2025香港特区薪酬指南

2025-03-16

X810基于MATLAB的森林生物声音分析系统

X810基于MATLAB的森林生物声音分析系统

2025-03-14

16831.pdf

16831

2024-12-08

14531.pdf

14531

2024-12-08

地理统计数据聚类的神经网络方法.pdf

地理统计数据聚类的神经网络方法

2024-12-08

pdfdownload.pdf

pdfdownload

2024-12-08

用人工神经网络方法估计崔──Lawson方程参数.pdf

用人工神经网络方法估计崔──Lawson方程参数

2024-12-08

神经网络学习算法及其在列车控制中的应用.pdf

神经网络学习算法及其在列车控制中的应用

2024-12-08

运用自组织人工神经网络预测黄土高原生态经济破坏程度.pdf

运用自组织人工神经网络预测黄土高原生态经济破坏程度

2024-12-08

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除