✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
共享单车作为一种新型城市出行方式,在全球范围内迅速普及,为解决城市“最后一公里”出行难题、缓解交通拥堵和减少碳排放做出了积极贡献。然而,共享单车系统的运营效率受到多种因素的影响,如天气、时间、节假日、潮汐效应等,导致车辆调度和投放面临诸多挑战。为了优化共享单车系统的运营管理,提高车辆利用率,精准预测共享单车租赁需求显得尤为重要。
本研究旨在探讨基于极限学习机(Extreme Learning Machine, ELM)的共享单车租赁预测模型。ELM作为一种新型的单隐层前馈神经网络算法,具有学习速度快、泛化性能好等优点,在数据挖掘和模式识别领域展现出广阔的应用前景。
1. 共享单车租赁影响因素分析
共享单车租赁需求受多种复杂因素的影响,主要包括:
- 时间因素:
小时、日、周、月等时间尺度上的周期性变化。例如,工作日上下班高峰期租赁需求量大,周末和节假日则可能呈现不同的模式。
- 气象因素:
温度、湿度、风速、降雨量、降雪量、天气状况等。恶劣天气通常会导致租赁需求下降。
- 节假日因素:
法定节假日、传统节日等对人们出行习惯产生影响,从而影响共享单车租赁需求。
- 地理位置因素:
不同区域的共享单车租赁热度存在差异,例如商业区、居民区、交通枢纽等地的租赁模式不同。
- 历史租赁数据:
历史租赁量本身包含重要的时序信息,是预测未来租赁需求的重要依据。
2. 极限学习机(ELM)模型
极限学习机(ELM)是由黄广斌教授等人提出的一种针对单隐层前馈神经网络的快速学习算法。与传统的BP神经网络等迭代式学习算法不同,ELM随机生成输入层到隐层的连接权重和隐层神经元的偏置,并解析地确定输出层的连接权重。
ELM的核心思想在于:
- 随机初始化:
隐层神经元的输入权重和偏置是随机生成的,无需迭代调整。
- 非线性映射:
通过激活函数将输入数据映射到高维特征空间。
- 最小二乘求解:
输出权重通过最小二乘法一次性计算得到,大大加快了学习速度。
ELM的数学模型可以表示为:
Hβ = T
其中,H是隐层输出矩阵,β是输出权重矩阵,T是目标输出矩阵。通过求解广义逆矩阵,可以得到:
β = H†T
ELM的优势在于:
- 学习速度快:
无需迭代调整隐层参数,避免了局部最优问题。
- 泛化性能好:
即使在训练样本较少的情况下,也能保持较好的泛化能力。
- 易于实现:
算法简单,易于编程实现。
3. 数据集与数据预处理
本研究将使用公开的共享单车租赁数据集(例如,Kaggle上的Bike Sharing Dataset)。该数据集通常包含小时或天级别的共享单车租赁记录,以及对应的日期、时间、温度、湿度、风速、天气状况、节假日等信息。
数据预处理是构建预测模型的关键步骤,主要包括:
- 数据清洗:
处理缺失值、异常值等。
- 特征工程:
从原始数据中提取更有助于预测的特征。例如,将日期转换为星期几、是否为工作日等离散特征;将小时数据进行编码处理以捕捉周期性。
- 数据归一化:
将不同量纲的特征数据统一到相同范围,以避免某些特征对模型训练产生过大影响。
4. 结论与展望
本研究将证明ELM模型在共享单车租赁预测方面具有良好的应用潜力。其快速的学习能力和良好的泛化性能使其成为共享单车运营管理的有力工具。
未来研究可以从以下几个方面进行拓展:
- 多源数据融合:
考虑整合更多数据源,如城市POI数据、交通流量数据等,以提高预测精度。
- 深度学习模型:
探索结合深度学习模型(如LSTM、GRU)的优势,进一步提升预测性能,尤其是在处理长期依赖和复杂时序模式方面。
- 模型优化:
对ELM模型的参数进行优化,例如隐层神经元数量、激活函数选择等。
- 实时预测系统:
将预测模型应用于实时共享单车调度系统,实现更精准的车辆投放和管理。
⛳️ 运行结果
🔗 参考文献
[1] 徐豪 刘婉月 张自豪.基于Pandas+Seaborn+Matplotlib的城市共享单车租赁分析可视化[J].现代信息科技, 2024(23).
[2] 孟英豪,王启阳,王柯人,等.基于Markov过程天气预测的共享单车调度优化研究[J].温州大学学报(自然科学版), 2024, 45(3):30-41.DOI:10.20108/j.wzun.202309010.
[3] 游江萍.山地城市轨道交通走廊共享电单车投放模型研究[D].重庆交通大学,2024.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇