题意:在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段。两条传送带分别为线段AB和线段CD。lxhgww在AB上的移动速度为P,在CD上的移动速度为Q,在平面上的移动速度R。现在lxhgww想从A点走到D点,他想知道最少需要走多长时间
第一次写三分,耗费时间明显是二次函数,所以三分AB上的点和CD上的点,所走过的路径就是AX,AY-X,Y-X1,Y1-DX,DY,距离算一下就好了。
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
const double eps=1e-5;
int ax,ay,bx,by,cx,cy,dx,dy,p,q,r;
double ans;
double dis(double x,double y,double x1,double y1)
{
double v1=sqrt((x-x1)*(x-x1)+(y-y1)*(y-y1));
return v1;
}
double work(double sx,double sy,double x,double y)
{
double res=dis(ax,ay,sx,sy)/p+dis(sx,sy,x,y)/r+dis(x,y,dx,dy)/q;
return res;
}
double calc(double sx,double sy)
{
double lx=cx,ly=cy,rx=dx,ry=dy;
while(fabs(lx-rx)>eps||fabs(ly-ry)>eps)
{
double x1=lx+(rx-lx)/3,y1=ly+(ry-ly)/3;
double x2=lx+(rx-lx)/3*2,y2=ly+(ry-ly)/3*2;
//cout<<y<<' '<<y1<<endl;
if(work(sx,sy,x1,y1)>work(sx,sy,x2,y2))
{
lx=x1;ly=y1;
}
else
{
rx=x2;ry=y2;
}
}
return work(sx,sy,lx,ly);
}
int main()
{
//freopen("1857.in","r",stdin);
//freopen("1857.out","w",stdout);
scanf("%d%d%d%d%d%d%d%d%d%d%d",&ax,&ay,&bx,&by,&cx,&cy,&dx,&dy,&p,&q,&r);
double lx=ax,ly=ay,rx=bx,ry=by;
while(fabs(lx-rx)>eps||fabs(ly-ry)>eps)
{
double x1=lx+(rx-lx)/3,y1=ly+(ry-ly)/3;
double x2=lx+(rx-lx)/3*2,y2=ly+(ry-ly)/3*2;
if(calc(x1,y1)>calc(x2,y2))
{
lx=x1;ly=y1;
}
else
{
rx=x2;ry=y2;
}
}
ans=min(calc(lx,ly),calc(rx,ry));
printf("%.2lf\n",ans);
return 0;
}