题意:
这个题还有很有技巧的,我们用动态规划来解决(其实我很长时间都在想网络流…)令g[k][i][j]表示只用第K种颜色完全占据I行J列,f[k][i][j]表示用前K种颜色完全占据I行J列(状态的设定很巧妙啊)
容易得到:f[k][i][j]=sigma(f[k-1][x][y]+g[k][i-x][i-y]*C(i,x)*C(j,y))
但怎么求g数组呢,可以用补集转化的思想,将完全占据的减去不完全占据的,如下:
g[k][i][j]=c[i*j][a[k]]-sigma(g[k][x][y]*c[i][x]*c[j][y])。
Tips:最后统计答案的时候还要注意下没有占满整个棋盘的情况
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
using namespace std;
const int maxn=1000+10;
const int md=1000000009;
long long f[15][33][33],g[15][33][33],c1[maxn][maxn];
int a[maxn],n,m,c;
int main()
{
//freopen("3294.in","r",stdin);
//freopen("3294.out","w",stdout);
scanf("%d%d%d",&n,&m,&c);
for(int i=1;i<=c;i++) scanf("%d",&a[i]);
c1[0][0]=1;
for(int i=1;i<=n*m;i++)
{
c1[i][0]=1;
for(int j=1;j<=i;j++)
c1[i][j]=(c1[i-1][j-1]+c1[i-1][j])%md;
}
for(int k=1;k<=c;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
if(i*j<a[k]||max(i,j)>a[k]) continue;
g[k][i][j]=c1[i*j][a[k]];
for(int x=1;x<=i;x++)
for(int y=1;y<=j;y++)
if(x<i||y<j)
{
long long res=c1[i][x]*c1[j][y]%md;
g[k][i][j]=(g[k][i][j]-g[k][x][y]*res%md+md)%md;
}
}
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
f[1][i][j]=g[1][i][j];
for(int k=2;k<=c;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
if(i*j<a[k]) continue;
for(int x=1;x<i;x++)
for(int y=1;y<j;y++)
{
long long res=c1[i][x]*c1[j][y]%md;
f[k][i][j]=(f[k][i][j]+(f[k-1][x][y]%md*g[k][i-x][j-y]%md)%md*res%md)%md;
}
}
long long ans=0;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
long long res=c1[n][i]*c1[m][j]%md;
ans=(ans+res*f[c][i][j]%md)%md;
}
printf("%lld\n",ans);
return 0;
}