Java基础四 注解和反射

博客介绍了注解相关知识,包括注解类型,如类运行周期、类成员、其他元素的标识;运行时使用,可通过Object获取对象属性和方法,利用注解操作,适用于eventbus等;编译时使用,需设置编译时标签,建立Javamodule,适用于bufferknife等工具。

个人理解类 非标准

1.注解的类型

1.表示在类在程序运行的周期的标识

2.表示在作用在类成员的标示

3.注解其他元素的标示

2.运行时的使用

1.设置的标注的作用域时程序运行时

2.通过Object 来获取对象的属性 通过注解来获取相关属性,通过设置accessable设置可以访问私有成员

3.通过Object来获取相应对象的方法,通过相关的注解获取相对应的方法,通过oobject.invoke来来执行相对应的方法

4.

5.使用场景和工具有:eventbus,sqlite的封装,界面ID绑定

3.编译时的使用

1.使用的注解需要设置标签是编译时的

2.由于编译时是Java就可以支持的因此需要建立Javamodule

3.建立标签Javamodule和Java标签接口

4.建立解析Javamodule解析Java文件中带有标签的内容生成相对应的Java文件,生成Java文件可以用适配器模式生成

5.

6.使用的场景和工具,bufferknife, arouter,greedao等

 

内容概要:本文介绍了ENVI Deep Learning V1.0的操作教程,重点讲解了如何利用ENVI软件进行深度学习模型的训练与应用,以实现遥感图像中特定目标(如集装箱)的自动提取。教程涵盖了从数据准备、标签图像创建、模型初始化与训练,到执行分类及结果优化的完整流程,并介绍了精度评价与通过ENVI Modeler实现一键化建模的方法。系统基于TensorFlow框架,采用ENVINet5(U-Net变体)架构,支持通过点、线、面ROI或分类图生成标签数据,适用于多/高光谱影像的单一类别特征提取。; 适合人群:具备遥感图像处理基础,熟悉ENVI软件操作,从事地理信息、测绘、环境监测等相关领域的技术人员或研究人员,尤其是希望将深度学习技术应用于遥感目标识别的初学者与实践者。; 使用场景及目标:①在遥感影像中自动识别提取特定地物目标(如车辆、建筑、道路、集装箱等);②掌握ENVI环境下深度学习模型的训练流程与关键参数设置(如Patch Size、Epochs、Class Weight等);③通过模型调优与结果反馈提升分类精度,实现高效自动化信息提取。; 阅读建议:建议结合实际遥感项目边学边练,重点关注标签数据制作、模型参数配置与结果后处理环节,充分利用ENVI Modeler进行自动化建模与参数优化,同时注意软硬件环境(特别是NVIDIA GPU)的配置要求以保障训练效率。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MatrixData

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值