数据结构-C语言描述(邻接表)

本文详细介绍了邻接表作为一种表示图的数据结构,包括其空间效率高和遍历速度快的优点,以及不适合储存稠密图和代码相对复杂的缺点。通过链表实现邻接表并探讨了从树到图的一对多到多对多的转换过程。

概述

1.邻接表的优缺点

邻接表是一种表示图的数据结构,事实上邻接表可以用于有向图、无向图、带权图、无权图。

邻接表表示法的优点主要有空间效率遍历效率

  • 空间利用率高:邻接表相较于邻接矩阵更加节省空间,特别是对于稀疏图。因为邻接表只需要储存实际存在的边,而邻接矩阵需要储存所有的边。
  • 遍历速度:邻接表在遍历与某顶点相邻的全部顶点时,时间复杂度与顶点的度成正比。对于稀疏图而言,这比邻接矩阵表示法的时间复杂度要低。

 邻接表的缺点

  • 不适合储存稠密图,此时邻接表顶点的边列表过长,导致储存和访问的效率大大降低。
  • 代码复杂,相较于邻接矩阵,邻接表表示法的代码逻辑稍复杂。

2.怎么从树->图(一对多->多对多)

今天我们用链表形式来实现一个邻接表,在实现邻接表之前,我们先观察一张有向图来摸索一下图中结点之间的关系:

 很自然地,我们会将这张有向图拆成两个部分:连接两个结点的有向边以及每个结点

那么我们应该如何用链表将这些信息储存起来呢?让我们回想一下树是如何用链表实现的,我们用数组TreeNode *nodes来储存结点,然后通过TreeNode* node->childrenlist(子结点链表)来记录每个结点下的子结点,这就是树结构(一对多)用链表的实现。

然后我们思考如何将这种树结构通过变换,来达到多对多的目的。我们首先明确一条边只能连接两个结点(这是关键),然后想着为结点、有向边定义两种结构体(VertexNode、EdgeNode)。在图结点结构体中要有一个链表(EdgeNode* firstEdge)储存所有由该结点发出的边,还要有数据域。每个边结构体中存放指向的顶点数据,如此就能够将有向图的数据结构用链表表达出来。

 1.邻接表的结构体申明

首先是必要的头文件:

#include <stdio.h>
#include <stdlib.h>

然后我们根据先前的分析定义三个结构体用于图的数据结构:

  • EdgeNode结构体用于表示图中的边,包括三个成员,vertex(这条边指向的顶点)、weight(这条边的权重)、*next(用于指向下一个边结点)
  • VertexNode结构体用于表示图中的顶点,包括两个成员,vertex(顶点索引)、firstEdge(指向该结点的第一个边结点)
  • Graph结构体用于整个图的表示,包括两个成员,vertices(顶点的数量)、数组nodes(用于记录所有顶点信息)
typedef struct EdgeNode {
	int vertex;  //这条边的结尾顶点 
	int weight;  //这条边上的权重 
	struct EdgeNode* next;  //指向下一边结点
} EdgeNode; 

typedef struct VertexNode {
	int vertex;  //顶点数据域 
	EdgeNode* firstEdge;  //指向该顶点的第一条边 
} VertexNode; 

typedef struct Graph {
	int vertices;  //顶点的数量 
	VertexNode* nodes;  //用来记录每个顶点信息 
} Graph; 

 2.邻接表的创建

 邻接表的创建就是将其初始化,调用malloc函数将g->nodes的空间分配好后,然后每个顶点赋值编号,并且将每个顶点指向的第一条边置空:

void GraphCreat(Graph* g,int vertices) {  //传入的参数是表*g和结点的数量vertices 
	g->vertices=vertices;  
	g->nodes=(VertexNode*)malloc(sizeof(VertexNode)*vertices);//为g->nodes分配空间 
	for(int i=0;i<g->vertices;i++){     
		g->nodes[i].vertex=i;          //将每个结点的数据初始化为结点编号
		g->nodes[i].firstEdge=NULL;    //且将结点指向的第一条边置空 
	}
}

3.邻接表的销毁

 销毁时需要将每个顶点的空间释放掉,仅需要获取每个顶点邻接边的链表头,然后遍历做删除操作即可:

void GraphDestroy(Graph* g) {
	for(int i=0;i<g->vertices;i++){
		EdgeNode* cur=g->nodes[i].firstEdge;
		while(cur){
			EdgeNode* temp=cur;
			cur=cur->next;
			free(temp);
		}
	}
	free(g->nodes);
	g->nodes=NULL;
}

 4.邻接表的边添加

 操作结果是是添加一条u->v权值为w的有向边,需要新定义一个边结点,将v作为该边结尾的顶点,w赋给该有向边的权值。然后将新边结点的后继next指向第u号元素的链表头,最后将链表头更新为新的边结点:

void GraphAddEdge(Graph* g,int u,int v,int w) {
	EdgeNode* nownode=(EdgeNode*)malloc(sizeof(EdgeNode));
	nownode->vertex=v;
	nownode->weight=w;
	nownode->next=g->nodes[u].firstEdge; //典型的头插法 
	g->nodes[u].firstEdge=nownode; 
}  

 5.邻接表的打印

void GraphPrint(Graph* g) {
	for(int i=0;i<g->vertices;i++){
		EdgeNode* cur=g->nodes[i].firstEdge;
		printf("Vertex %d:",i);
		while(cur){
			printf("%d(%d)",cur->vertex,cur->weight);
			cur=cur->next;
		}
		printf("\n");
	} 
} 

打印就是将该图遍历一遍,并且将顶点值与该顶点的边结点(包括边结尾顶点值)及权重依次打印出来

例如下面有向图:

 打印的结果应该为:

完整源码

#include <stdio.h>
#include <stdlib.h>

typedef struct EdgeNode {
	int vertex;  //这条边的结尾顶点 
	int weight;  //这条边上的权重 
	struct EdgeNode* next;  //指向下一条边 
} EdgeNode; 

typedef struct VertexNode {
	int vertex;  //顶点数据域 
	EdgeNode* firstEdge;  //指向该节点的第一条边 
} VertexNode; 

typedef struct Graph {
	int vertices;  //结点的数量 
	VertexNode* nodes;  //用来记录每个结点 
} Graph; 

void GraphCreat(Graph* g,int vertices) {  //传入的参数是表g和结点的数量vertices 
	g->vertices=vertices;  
	g->nodes=(VertexNode*)malloc(sizeof(VertexNode)*vertices);//为g->node分配空间 
	for(int i=0;i<g->vertices;i++){     
		g->nodes[i].vertex=i;          //将每个结点的数据初始化为结点编号
		g->nodes[i].firstEdge=NULL;    //且将结点指向的第一条边置空 
	}
}

void GraphDestroy(Graph* g) {
	for(int i=0;i<g->vertices;i++){
		EdgeNode* cur=g->nodes[i].firstEdge;
		while(cur){
			EdgeNode* temp=cur;
			cur=cur->next;
			free(temp);
		}
	}
	free(g->nodes);
	g->nodes=NULL;
}

void GraphAddEdge(Graph* g,int u,int v,int w) {
	EdgeNode* nownode=(EdgeNode*)malloc(sizeof(EdgeNode));
	nownode->vertex=v;
	nownode->weight=w;
	nownode->next=g->nodes[u].firstEdge; //典型的头插法 
	g->nodes[u].firstEdge=nownode; 
}  

void GraphPrint(Graph* g) {
	for(int i=0;i<g->vertices;i++){
		EdgeNode* cur=g->nodes[i].firstEdge;
		printf("Vertex %d:",i);
		while(cur){
			printf("%d(%d)",cur->vertex,cur->weight);
			cur=cur->next;
		}
		printf("\n");
	} 
} 

int main (){
	Graph g;
	GraphCreat(&g,5);
	
	GraphAddEdge(&g,0,1,4);
	GraphAddEdge(&g,0,2,2);
	GraphAddEdge(&g,1,2,3);
	GraphAddEdge(&g,2,3,4);
	GraphAddEdge(&g,3,4,2);
	
	GraphPrint(&g);
	GraphDestroy(&g);
	return 0; 
}

### 图的邻接链表表示方法及实现示例 #### 邻接链表的基本概念 邻接链表是一种用于表示图的数据结构,特别适用于稀疏图(即边的数量远小于顶点数量平方的图)。其核心思想是,对于图中的每个顶点,使用一个链表来存储与该顶点相邻的其他顶点。每个链表中的节点表示从当前顶点出发的边的终点。这种方式能够高效地存储和遍历图的边,同时节省存储空间[^1]。 在有向图中,邻接链表仅记录从当前顶点出发的边的终点。例如,如果存在一条从顶点 A 到顶点 B 的边,则在顶点 A 的邻接链表中添加 B,但在顶点 B 的邻接链表中不会添加 A。 #### 邻接链表的实现 下面是一个使用 C++ 实现有向图的邻接链表表示的示例。该实现包括以下几个组件: - `Graph`:表示整个有向图。 - `Node`:表示图中的一个顶点及其邻接链表- `AdjNode`:表示邻接链表中的一个节点。 ```cpp #include <iostream> using namespace std; // 邻接表中的节点 struct AdjNode { int dest; // 边的终点 AdjNode* next; // 指向下一个邻接节点的指针 AdjNode(int dest) : dest(dest), next(nullptr) {} }; // 图的节点 struct Node { AdjNode* head; // 指向邻接表的头节点 Node() : head(nullptr) {} }; // 图的邻接表表示 class Graph { private: int numVertices; // 图中的顶点数量 Node* adjListArray; // 邻接表数组 public: // 构造函数 Graph(int numVertices) { this->numVertices = numVertices; adjListArray = new Node[numVertices]; } // 添加边 void addEdge(int src, int dest) { // 创建新的邻接节点 AdjNode* newNode = new AdjNode(dest); newNode->next = adjListArray[src].head; adjListArray[src].head = newNode; } // 打印图的邻接表表示 void printGraph() { for (int i = 0; i < numVertices; ++i) { cout << "顶点 " << i << " 的邻接表: "; AdjNode* temp = adjListArray[i].head; while (temp) { cout << "-> " << temp->dest; temp = temp->next; } cout << endl; } } // 析构函数 ~Graph() { for (int i = 0; i < numVertices; ++i) { AdjNode* temp = adjListArray[i].head; while (temp) { AdjNode* next = temp->next; delete temp; temp = next; } } delete[] adjListArray; } }; int main() { Graph graph(5); // 创建一个包含5个顶点的图 graph.addEdge(0, 1); graph.addEdge(0, 4); graph.addEdge(1, 2); graph.addEdge(1, 3); graph.addEdge(1, 4); graph.addEdge(2, 3); graph.addEdge(3, 4); graph.printGraph(); return 0; } ``` #### 代码解析 1. **数据结构定义**: - `AdjNode` 结构体表示邻接表中的一个节点,包含边的终点和指向下一个节点的指针。 - `Node` 结构体表示图中的一个顶点,包含指向邻接表头节点的指针。 - `Graph` 类表示整个有向图,包含顶点数量和邻接表数组。 2. **添加边**: - `addEdge` 方法用于在图中添加一条从 `src` 到 `dest` 的边。该方法创建一个新的 `AdjNode` 节点,并将其插入到 `src` 的邻接表链表中。 3. **打印图的邻接表表示**: - `printGraph` 方法遍历图的每个顶点,并打印其邻接表中的所有节点。 4. **内存管理**: - 析构函数 `~Graph` 负责释放图中所有邻接表节点占用的内存,避免内存泄漏。 #### 邻接链表的优势 - **空间效率**:邻接链表在存储稀疏图时比邻接矩阵更节省空间,因为它仅存储存在的边。 - **灵活性**:邻接链表能够轻松处理动态变化的图,例如频繁添加或删除边的情况。 - **遍历效率**:对于图的遍历操作(如深度优先搜索和广度优先搜索),邻接链表通常比邻接矩阵更高效,因为它直接提供了每个顶点的所有邻接节点。 #### 应用场景 邻接链表广泛应用于图算法中,例如: - **最短路径算法**:如 Dijkstra 算法和 Bellman-Ford 算法- **最小生成树算法**:如 Prim 算法- **拓扑排序**:用于有向无环图的排序。 - **网络流算法**:如 Ford-Fulkerson 算法。 #### 相关问题 1. 邻接矩阵和邻接链表在表示图时的优缺点是什么? 2. 如何在邻接链表中实现图的深度优先搜索? 3. 如何在邻接链表中实现图的广度优先搜索? 4. 如何在邻接链表中添加带权重的边? 5. 如何在邻接链表中删除一条边?
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值