Conda完全指南:从入门到精通的环境管理实战教程
目录
- 1. Conda 简介
- 2. 安装与配置
- 3. 环境管理基础
- 4. 包管理
- 5. 频道(Channels)管理
- 6. 高级功能
- 7. 最佳实践
- 8. 常用命令速查
- 9. 常见问题与故障排查
- 10. 附录
- 快速开始清单
1. Conda 简介
1.1 什么是 Conda
Conda 是一个开源的包管理系统和环境管理系统,可以:
- 快速安装、运行和更新软件包及其依赖项
- 在本地计算机上轻松创建、保存、加载和切换环境
- 跨平台支持(Windows、macOS、Linux)
- 支持多种编程语言(Python、R、Ruby、Lua、Scala、Java 等)
1.2 Conda vs Pip vs Virtualenv
| 特性 | Conda | Pip | Virtualenv |
|---|---|---|---|
| 包管理 | ✓ | ✓ | ✗ |
| 环境管理 | ✓ | ✗ | ✓ |
| 依赖解析 | 更强大 | 基础 | - |
| 二进制包 | ✓ | 部分 | - |
| 非 Python 包 | ✓ | ✗ | ✗ |
| 系统级库 | ✓ | ✗ | ✗ |
1.3 Anaconda vs Miniconda vs Miniforge
- Anaconda:完整发行版,包含 250+ 预装包,约 3GB
- Miniconda:最小安装,只包含 conda 和 Python,约 50MB
- Miniforge:社区驱动,默认使用 conda-forge 频道,推荐使用
推荐选择:
- 初学者/数据科学:Anaconda
- 开发者/自定义需求:Miniconda 或 Miniforge
1.4 为什么使用 Conda
优势:
- 依赖管理强大:自动解决复杂的包依赖关系
- 环境隔离:避免不同项目间的包冲突
- 二进制包分发:无需编译,安装速度快
- 跨语言支持:不仅限于 Python
- 可重现性:轻松导出和复现环境配置
2. 安装与配置
2.1 安装 Conda
Windows 安装:
# 下载 Miniconda 安装器
# 访问:https://docs.conda.io/en/latest/miniconda.html
# 运行 .exe 安装程序,按提示操作
# 建议勾选"Add Conda to PATH"(或手动添加)
macOS 安装:
# 使用 Homebrew
brew install --cask miniconda
# 或下载安装器
curl -O https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh
bash Miniconda3-latest-MacOSX-x86_64.sh
Linux 安装:
# 下载安装器
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
# 运行安装
bash Miniconda3-latest-Linux-x86_64.sh
# 按提示操作,建议安装到默认位置
2.2 验证安装
# 检查 conda 版本
conda --version
# 输出:conda 23.x.x
# 查看详细信息
conda info
# 更新 conda 到最新版本
conda update conda
2.3 配置 Conda
配置镜像源(国内加速):
# 清华源(推荐)
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/pro
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
# conda-forge 清华源
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
# 设置搜索时显示通道地址
conda config --set show_channel_urls yes
配置文件 .condarc:
重要说明:.condarc 文件默认不存在,需要手动创建或通过 conda config 命令自动生成。
位置:
- Windows:
C:\Users\用户名\.condarc - macOS/Linux:
~/.condarc
如何创建:
# 方法1:通过配置命令自动创建(推荐)
conda config --set show_channel_urls yes
# 方法2:手动创建
# Windows: notepad %USERPROFILE%\.condarc
# Linux/macOS: touch ~/.condarc
# 验证文件位置
conda config --show-sources
示例配置:
channels:
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
- defaults
show_channel_urls: true
auto_activate_base: false # 关闭自动激活 base 环境
channel_priority: flexible # 频道优先级策略
2.4 初始化 Shell
# Bash
conda init bash
# Zsh
conda init zsh
# PowerShell (Windows)
conda init powershell
# 初始化后需要重启终端或执行
source ~/.bashrc # Linux/macOS
3. 环境管理基础
3.1 创建环境
# 创建指定 Python 版本的环境
conda create -n myenv python=3.9
# 创建环境并安装多个包
conda create -n myenv python=3.9 numpy pandas matplotlib
# 创建环境指定多个包版本
conda create -n myenv python=3.9 numpy=1.21 pandas=1.3
# 在指定位置创建环境
conda create -p /path/to/env python=3.9
3.2 激活和退出环境
# 激活环境
conda activate myenv
# 退出当前环境
conda deactivate
# 激活指定路径的环境
conda activate /path/to/env
注意:Windows 可能需要先运行 conda init 才能使用 conda activate
3.3 查看环境列表
# 列出所有环境
conda env list
# 或
conda info --envs
# 输出示例:
# base * /home/user/miniconda3
# myenv /home/user/miniconda3/envs/myenv
# project1 /home/user/miniconda3/envs/project1
3.4 删除环境
# 删除指定环境
conda remove -n myenv --all
# 删除指定路径的环境
conda remove -p /path/to/env --all
# 确认删除
conda env remove -n myenv
3.5 克隆环境
# 克隆现有环境
conda create -n newenv --clone myenv
# 克隆到指定路径
conda create -p /path/to/newenv --clone myenv
3.6 导出和导入环境
# 导出环境到 YAML 文件
conda env export > environment.yml
# 导出不包含构建信息(跨平台兼容)
conda env export --no-builds > environment.yml
# 导出只包含显式安装的包
conda env export --from-history > environment.yml
# 从 YAML 文件创建环境
conda env create -f environment.yml
# 更新现有环境
conda env update -f environment.yml --prune
environment.yml 示例:
name: myenv
channels:
- conda-forge
- defaults
dependencies:
- python=3.9
- numpy=1.21
- pandas=1.3
- matplotlib
- pip
- pip:
- requests
- beautifulsoup4
4. 包管理
4.1 搜索包
# 搜索包
conda search numpy
# 搜索特定版本
conda search numpy=1.21
# 搜索并显示所有信息
conda search numpy --info
# 在指定频道搜索
conda search -c conda-forge numpy
4.2 安装包
# 安装包到当前环境
conda install numpy
# 安装特定版本
conda install numpy=1.21.0
# 安装多个包
conda install numpy pandas matplotlib
# 安装到指定环境
conda install -n myenv numpy
# 从特定频道安装
conda install -c conda-forge numpy
# 安装不更新依赖
conda install --no-update-deps numpy
# 跳过确认直接安装
conda install -y numpy
4.3 更新包
# 更新指定包
conda update numpy
# 更新所有包
conda update --all
# 更新 conda 本身
conda update conda
# 更新到指定版本
conda update numpy=1.22
# 更新指定环境的包
conda update -n myenv numpy
4.4 卸载包
# 卸载包
conda remove numpy
# 卸载多个包
conda remove numpy pandas
# 从指定环境卸载
conda remove -n myenv numpy
# 卸载包及其依赖(如果没有其他包依赖)
conda remove numpy --force
4.5 查看已安装的包
# 列出当前环境所有包
conda list
# 搜索特定包
conda list numpy
# 列出指定环境的包
conda list -n myenv
# 以导出格式显示
conda list --export > packages.txt
# 显示包的详细信息
conda list --show-channel-urls
4.6 从 requirements.txt 安装
# 使用 conda 安装 requirements.txt
conda install --file requirements.txt
# 如果包在 PyPI 上,使用 pip
pip install -r requirements.txt
# 混合安装(推荐先用 conda,后用 pip)
conda install --file conda-requirements.txt
pip install -r pip-requirements.txt
最佳实践:
- 优先使用 conda 安装
- conda 不可用时使用 pip
- 避免混用可能导致依赖冲突
5. 频道(Channels)管理
5.1 什么是 Channel
Channel 是 conda 包的存储位置,类似于软件仓库:
- defaults:Anaconda 官方维护的默认频道
- conda-forge:社区维护,包最全面,更新最快
- 自定义频道:可以创建私有频道
5.2 添加和删除 Channel
# 添加频道(会添加到最高优先级)
conda config --add channels conda-forge
# 添加到最低优先级
conda config --append channels conda-forge
# 删除频道
conda config --remove channels conda-forge
# 查看所有频道
conda config --show channels
# 查看频道优先级顺序
conda config --get channels
5.3 常用 Channels
conda-forge:
# 添加 conda-forge(推荐)
conda config --add channels conda-forge
conda config --set channel_priority strict
- 优点:包最全,社区活跃,更新快
- 适合:大多数开发场景
bioconda:
# 生物信息学相关包
conda config --add channels bioconda
- 专注于生物信息学工具
pytorch:
# PyTorch 官方频道
conda config --add channels pytorch
nvidia:
# CUDA 相关包
conda config --add channels nvidia
5.4 Channel 优先级
# 设置严格优先级(推荐)
conda config --set channel_priority strict
# 设置灵活优先级
conda config --set channel_priority flexible
# 禁用优先级
conda config --set channel_priority disabled
优先级策略说明:
- strict:严格按频道顺序,优先级高的频道包优先
- flexible:选择版本最高的包,不完全按频道顺序
- disabled:禁用优先级,可能导致依赖混乱
推荐配置:
conda config --add channels conda-forge
conda config --set channel_priority strict
6. 高级功能
6.1 环境变量管理
# 设置环境变量(激活时生效)
conda env config vars set MY_VAR=value
# 设置多个环境变量
conda env config vars set VAR1=value1 VAR2=value2
# 查看环境变量
conda env config vars list
# 删除环境变量
conda env config vars unset MY_VAR
# 重新激活环境使变量生效
conda deactivate
conda activate myenv
6.2 环境激活脚本
在环境目录中创建激活/退出脚本:
Linux/macOS:
# 激活脚本
mkdir -p $CONDA_PREFIX/etc/conda/activate.d
echo 'export MY_VAR=value' > $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh
# 退出脚本
mkdir -p $CONDA_PREFIX/etc/conda/deactivate.d
echo 'unset MY_VAR' > $CONDA_PREFIX/etc/conda/deactivate.d/env_vars.sh
Windows:
# 激活脚本
mkdir $env:CONDA_PREFIX\etc\conda\activate.d
echo "set MY_VAR=value" > $env:CONDA_PREFIX\etc\conda\activate.d\env_vars.bat
# 退出脚本
mkdir $env:CONDA_PREFIX\etc\conda\deactivate.d
echo "set MY_VAR=" > $env:CONDA_PREFIX\etc\conda\deactivate.d\env_vars.bat
6.3 创建 YAML 环境文件
完整示例:
name: data-science-project
channels:
- conda-forge
- defaults
dependencies:
- python=3.9
- numpy=1.21
- pandas=1.3
- matplotlib=3.4
- scikit-learn=1.0
- jupyter
- pip
- pip:
- tensorboard==2.8.0
- wandb
variables:
DATA_PATH: /data
MODEL_PATH: /models
6.4 跨平台环境共享
方法1:使用 --from-history(推荐)
# 只导出显式安装的包,跨平台兼容性好
conda env export --from-history > environment.yml
方法2:分平台导出
# Linux/macOS
conda env export --no-builds | grep -v "^prefix: " > environment.yml
# Windows
conda env export --no-builds | findstr /v "^prefix: " > environment.yml
方法3:手动维护 YAML
- 只指定包名和主要版本
- 让 conda 自动解决平台特定依赖
6.5 Conda 与 Docker 结合使用
Dockerfile 示例:
FROM continuumio/miniconda3
# 复制环境文件
COPY environment.yml /tmp/environment.yml
# 创建环境
RUN conda env create -f /tmp/environment.yml
# 激活环境
SHELL ["conda", "run", "-n", "myenv", "/bin/bash", "-c"]
# 设置默认环境
ENV PATH /opt/conda/envs/myenv/bin:$PATH
# 应用代码
COPY . /app
WORKDIR /app
CMD ["python", "app.py"]
优化版:
FROM mambaorg/micromamba:latest
COPY --chown=$MAMBA_USER:$MAMBA_USER environment.yml /tmp/environment.yml
RUN micromamba install -y -n base -f /tmp/environment.yml && \
micromamba clean --all --yes
WORKDIR /app
COPY . /app
CMD ["/usr/local/bin/_entrypoint.sh", "python", "app.py"]
7. 最佳实践
7.1 项目环境隔离
为每个项目创建独立环境:
# 项目目录结构
my-project/
├── environment.yml
├── src/
└── README.md
# 创建项目环境
cd my-project
conda env create -f environment.yml
conda activate my-project
好处:
- 避免包版本冲突
- 便于环境复现
- 团队协作一致性
7.2 环境命名规范
推荐命名方式:
# 按项目名称
conda create -n project-name python=3.9
# 按用途-版本
conda create -n ml-py39 python=3.9
# 按框架-版本
conda create -n pytorch-1.12 python=3.9
避免:
- 过于简短的名称(如
env,test) - 特殊字符和空格
- 过长的名称
7.3 依赖管理策略
1. 固定主要版本,灵活次要版本:
dependencies:
- python=3.9.* # 固定主版本
- numpy>=1.21,<2 # 范围版本
- pandas=1.3 # 固定版本
2. 区分开发和生产依赖:
# environment.yml
name: myproject
dependencies:
- python=3.9
- numpy
- pandas
# environment-dev.yml
name: myproject-dev
dependencies:
- python=3.9
- numpy
- pandas
- pytest
- black
- flake8
3. 定期更新依赖:
# 更新环境文件
conda env update -f environment.yml --prune
# 导出更新后的环境
conda env export --from-history > environment.yml
7.4 性能优化
1. 使用 Mamba 加速:
# 安装 mamba
conda install -n base -c conda-forge mamba
# 使用 mamba 替代 conda
mamba install numpy pandas
mamba create -n myenv python=3.9
2. 配置并行下载:
conda config --set default_threads 8
3. 使用本地缓存:
# 查看缓存位置
conda info
# 不删除缓存包
conda config --set always_copy false
4. 减少依赖解析时间:
# 使用严格频道优先级
conda config --set channel_priority strict
# 指定包版本
conda install numpy=1.21 pandas=1.3
7.5 磁盘空间管理
查看空间占用:
# 查看所有包和环境大小
conda info --all
# 查看包缓存
du -sh $CONDA_PREFIX/pkgs
清理空间:
# 清理未使用的包缓存
conda clean --packages
# 清理索引缓存
conda clean --index-cache
# 清理所有(包括 tar 包)
conda clean --all
# 删除孤立包(不属于任何环境的包)
conda clean --packages --yes
# 移除未使用的环境
conda env remove -n old-env
定期维护:
# 每月执行一次
conda clean --all --yes
conda update conda
conda update --all
8. 常用命令速查
8.1 环境管理命令
# 创建环境
conda create -n <env-name> python=<version>
conda create -n <env-name> python=<version> <packages>
# 激活/退出环境
conda activate <env-name>
conda deactivate
# 列出环境
conda env list
conda info --envs
# 删除环境
conda remove -n <env-name> --all
conda env remove -n <env-name>
# 克隆环境
conda create -n <new-env> --clone <old-env>
# 导出/导入环境
conda env export > environment.yml
conda env export --from-history > environment.yml
conda env create -f environment.yml
8.2 包管理命令
# 搜索包
conda search <package>
conda search <package>=<version>
# 安装包
conda install <package>
conda install <package>=<version>
conda install -c <channel> <package>
# 更新包
conda update <package>
conda update --all
conda update conda
# 删除包
conda remove <package>
conda remove <package1> <package2>
# 列出包
conda list
conda list <package>
conda list -n <env-name>
8.3 配置命令
# 频道管理
conda config --add channels <channel>
conda config --remove channels <channel>
conda config --show channels
# 配置项设置
conda config --set <key> <value>
conda config --get <key>
conda config --show
# 常用配置
conda config --set show_channel_urls yes
conda config --set channel_priority strict
conda config --set auto_activate_base false
8.4 信息查询命令
# Conda 信息
conda --version
conda info
conda info --all
# 包信息
conda search <package> --info
conda list <package>
# 环境信息
conda env list
conda list -n <env-name>
# 配置信息
conda config --show
conda config --show-sources
9. 常见问题与故障排查
9.0 找不到 .condarc 配置文件
问题:按照路径找不到 .condarc 文件
原因:.condarc 文件默认不存在,只有运行过 conda config 命令后才会自动创建。
解决方案:
# 执行任意配置命令即可创建文件
conda config --set show_channel_urls yes
# 或者配置镜像源(会自动创建)
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
# 验证文件已创建
conda config --show-sources
# 查看文件内容
# Windows: type %USERPROFILE%\.condarc
# Linux/macOS: cat ~/.condarc
9.1 环境激活失败
问题:conda activate 不工作
解决方案:
# 重新初始化 shell
conda init bash # 或 zsh, powershell
source ~/.bashrc # 或重启终端
# Windows PowerShell 需要执行策略
Set-ExecutionPolicy RemoteSigned -Scope CurrentUser
# 如果使用 source activate(旧方式)
conda activate myenv # 使用新方式
9.2 包冲突解决
问题:包依赖冲突,无法安装
解决方案:
# 方法1:使用 mamba(更好的依赖解析)
conda install -n base -c conda-forge mamba
mamba install <problematic-package>
# 方法2:创建新环境
conda create -n new-env python=3.9
conda activate new-env
conda install <packages>
# 方法3:指定宽松的版本约束
conda install "package>=1.0"
# 方法4:使用不同的频道
conda install -c conda-forge <package>
# 方法5:重置环境
conda remove -n myenv --all
conda create -n myenv python=3.9
调试命令:
# 查看包依赖
conda search --info <package>
# 详细输出安装过程
conda install --debug <package>
# 检查冲突
conda list --revisions
conda install --revision <number> # 回退到之前版本
9.3 网络问题
问题:下载速度慢或连接失败
解决方案:
# 配置国内镜像(清华源)
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
conda config --set show_channel_urls yes
# 阿里云镜像
conda config --add channels https://mirrors.aliyun.com/anaconda/pkgs/main/
conda config --add channels https://mirrors.aliyun.com/anaconda/pkgs/free/
# 增加重试次数
conda config --set remote_connect_timeout_secs 30
conda config --set remote_read_timeout_secs 60
# 使用代理
conda config --set proxy_servers.http http://proxy.example.com:8080
conda config --set proxy_servers.https https://proxy.example.com:8080
# 移除代理
conda config --remove-key proxy_servers
9.4 权限问题
问题:Permission denied 错误
解决方案:
# Linux/macOS: 修改 conda 目录权限
sudo chown -R $USER:$USER ~/miniconda3
# 或使用用户目录安装环境
conda create -p ~/envs/myenv python=3.9
# Windows: 以管理员身份运行
# 右键 Anaconda Prompt -> 以管理员身份运行
# 或安装到用户目录
conda config --add envs_dirs ~/conda-envs
conda config --add pkgs_dirs ~/conda-pkgs
9.5 空间清理
问题:磁盘空间不足
解决方案:
# 查看空间占用
conda info
du -sh ~/miniconda3/pkgs
du -sh ~/miniconda3/envs
# 清理缓存
conda clean --all --yes
# 删除未使用的环境
conda env list
conda env remove -n <unused-env>
# 删除特定包的旧版本
conda list --revisions
conda clean --packages
# 移动环境到其他磁盘(Linux/macOS)
mv ~/miniconda3/envs/myenv /mnt/data/conda-envs/
ln -s /mnt/data/conda-envs/myenv ~/miniconda3/envs/myenv
# 配置包缓存位置
conda config --add pkgs_dirs /path/to/new/location
预防措施:
# 定期清理
conda clean --all --yes
# 只保留必要的环境
conda env remove -n <env-name>
# 使用 --no-cache 选项安装
conda install --no-cache <package>
10. 附录
10.1 常用镜像源列表
中国大陆镜像:
清华大学 TUNA 镜像(推荐):
https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch
中科大镜像:
https://mirrors.ustc.edu.cn/anaconda/pkgs/main
https://mirrors.ustc.edu.cn/anaconda/pkgs/free
https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
阿里云镜像:
https://mirrors.aliyun.com/anaconda/pkgs/main
https://mirrors.aliyun.com/anaconda/pkgs/free
https://mirrors.aliyun.com/anaconda/cloud/conda-forge
上海交大镜像:
https://mirror.sjtu.edu.cn/anaconda/pkgs/main
https://mirror.sjtu.edu.cn/anaconda/pkgs/free
https://mirror.sjtu.edu.cn/anaconda/cloud/conda-forge
配置方法:
# 清华源完整配置
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
conda config --set show_channel_urls yes
10.2 Conda 配置文件完整说明
位置:
- Linux/macOS:
~/.condarc - Windows:
C:\Users\<用户名>\.condarc
完整配置示例:
# 频道配置
channels:
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
- defaults
# 显示频道 URL
show_channel_urls: true
# 频道优先级策略
channel_priority: strict # strict | flexible | disabled
# 自动激活 base 环境
auto_activate_base: false
# 环境和包目录
envs_dirs:
- ~/conda-envs
- ~/.conda/envs
pkgs_dirs:
- ~/conda-pkgs
- ~/.conda/pkgs
# SSL 验证
ssl_verify: true
# 代理设置
proxy_servers:
http: http://proxy.example.com:8080
https: https://proxy.example.com:8080
# 网络超时设置(秒)
remote_connect_timeout_secs: 30
remote_read_timeout_secs: 60
remote_max_retries: 3
# 并行下载线程数
default_threads: 4
# 始终复制而不是硬链接
always_copy: false
# 报告错误
report_errors: true
# 自动更新
auto_update_conda: false
# Solver 设置
solver: classic # classic | libmamba
# 环境变量提示符修改
changeps1: true
# 安全设置
allow_softlinks: true
safety_checks: warn # disabled | warn | enabled
# pip 互操作性
pip_interop_enabled: false
常用配置项说明:
| 配置项 | 说明 | 推荐值 |
|---|---|---|
show_channel_urls | 显示包来源 | true |
channel_priority | 频道优先级 | strict |
auto_activate_base | 自动激活 base | false |
ssl_verify | SSL 验证 | true |
always_copy | 复制而不是链接 | false |
default_threads | 下载线程数 | 4-8 |
10.3 相关资源和文档链接
官方文档:
- Conda 官方文档: https://docs.conda.io/
- Conda 用户指南: https://docs.conda.io/projects/conda/en/latest/user-guide/
- Conda 命令参考: https://docs.conda.io/projects/conda/en/latest/commands.html
- Anaconda 文档: https://docs.anaconda.com/
包仓库:
- Anaconda 包仓库: https://anaconda.org/
- conda-forge: https://conda-forge.org/
- PyPI (pip): https://pypi.org/
社区资源:
- Conda GitHub: https://github.com/conda/conda
- Conda-forge GitHub: https://github.com/conda-forge
- Stack Overflow: https://stackoverflow.com/questions/tagged/conda
中文资源:
- 清华大学开源镜像站: https://mirrors.tuna.tsinghua.edu.cn/help/anaconda/
- 中科大镜像站: https://mirrors.ustc.edu.cn/help/anaconda.html
工具:
- Mamba (快速包管理器): https://mamba.readthedocs.io/
- Miniforge: https://github.com/conda-forge/miniforge
- Micromamba: https://mamba.readthedocs.io/en/latest/user_guide/micromamba.html
最佳实践:
- Conda myths and misconceptions: https://jakevdp.github.io/blog/2016/08/25/conda-myths-and-misconceptions/
- Conda vs Pip: https://www.anaconda.com/blog/understanding-conda-and-pip
视频教程:
- Anaconda YouTube 频道: https://www.youtube.com/c/ContinuumIo
- Corey Schafer Python 教程: https://www.youtube.com/playlist?list=PL-osiE80TeTt2d9bfVyTiXJA-UTHn6WwU
快速开始清单
# 1. 安装 Miniconda
# 下载并安装:https://docs.conda.io/en/latest/miniconda.html
# 2. 配置镜像(国内用户)
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
conda config --set show_channel_urls yes
# 3. 创建项目环境
conda create -n myproject python=3.9
conda activate myproject
# 4. 安装包
conda install numpy pandas matplotlib
# 5. 导出环境
conda env export --from-history > environment.yml
# 6. 在其他机器复现
conda env create -f environment.yml
conda activate myproject
205

被折叠的 条评论
为什么被折叠?



