[NOIP]2016 D2T1 组合数问题

组合数问题具体描述:

组合数Cmn表示从n个物品中选m个物品的方案数,根据组合数的定义,我们可以知道计算组合数的一般公式:

Cmn=n!/(m!*(n-m)!)


现在,小葱想知道如果给的n,m,k,  对于0<=i<=n,  0<=j<=min(i,m),有多少对(i,j)满足Cji是k的倍数

输入描述 Input Description

第一行有两个整数t, k,其中t代表该测试点总共有多少组测试数据,k的意义见【问题描述】。 
  接下来t行每行两个整数n, m,其中n, m的意义见【问题描述】。

输出描述 Output Description

t行,每行一个整数代表所有的0<=i<=n,0<=j<=min(i,m)中有多少对(i, j)满足C(j,i)是k的倍数

样例输入 Sample Input

输入1: 
1 2 
3 3

输入2: 
2 5 
4 5 
6 7


样例输出 Sample Output

输出1: 
1

输出2: 

7


数据范围及提示 Data Size & Hint

样例1提示: 
在所有可能的情况中,只有C(1,2)是2的倍数。

n<=2000

m<=2000

k<=21

t<=10^4


闲话  

去年考NOIP的时候还是一个只学了两个月的傻逼...当时看到这道题直接打了暴力...话说当时没学多少竟然还混了个二等奖.不过现在反观去年NOIP真的比起前几年难度是猛增啊, D1T2竟然才是最难题.去年好像是第一次出现了期望dp和状压dp...难不成今年就要考轮廓线和插头了吗...


题解

其实就是求出n,m内的组合数和, 因为毕竟由线性递推公式处理组合数之后, 每次模的树就是k, 看一下每个是不是0即可, 考虑到多组数据, 离线处理线性递推式(就是杨辉三角), 然后再处理前缀和优化即可.

#include<stdio.h>
#include<algorithm>
using namespace std;
const int maxn = 2005;
int k, T, maxx, ans;
int n[maxn*5], m[maxn*5], c[maxn][maxn], sum[maxn][maxn];
int main(){
	scanf("%d%d", &T, &k);
	for(register int i = 1; i <= T; ++i){
		scanf("%d%d", &n[i], &m[i]);
		maxx = max(maxx, n[i]);
	}
	for(register int i = 0; i <= maxx; ++i) c[i][i] = 1, c[i][1] = i % k;
	for(register int i = 2; i <= maxx; ++i)
		for(register int j = 2; j <= maxx; ++j)
			c[i][j] = (c[i-1][j-1] + c[i-1][j]) % k;
	for(register int j = 1; j <= maxx; ++j)
		for(register int i = j; i <= maxn; ++i)
			if(!c[i][j])
				sum[i][j] = sum[i-1][j] + 1;
			else sum[i][j] = sum[i-1][j];
	for(register int t = 1; t <= T; ++t){
		ans = 0;
		for(register int i = 1; i <= m[t]; ++i)
			ans += sum[n[t]][i];
		printf("%d\n", ans);
	}
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值