[POJ]2983 Is the Information Reliable? 差分约束判有无解(判负环)

Is the Information Reliable?
Time Limit: 3000MS Memory Limit: 131072K
Total Submissions: 14151 Accepted: 4443

Description

The galaxy war between the Empire Draco and the Commonwealth of Zibu broke out 3 years ago. Draco established a line of defense called Grot. Grot is a straight line with N defense stations. Because of the cooperation of the stations, Zibu’s Marine Glory cannot march any further but stay outside the line.

A mystery Information Group X benefits form selling information to both sides of the war. Today you the administrator of Zibu’s Intelligence Department got a piece of information about Grot’s defense stations’ arrangement from Information Group X. Your task is to determine whether the information is reliable.

The information consists of M tips. Each tip is either precise or vague.

Precise tip is in the form of P A B X, means defense station A is X light-years north of defense station B.

Vague tip is in the form of V A B, means defense station A is in the north of defense station B, at least 1 light-year, but the precise distance is unknown.

Input

There are several test cases in the input. Each test case starts with two integers N (0 < N ≤ 1000) and M (1 ≤ M ≤ 100000).The next M line each describe a tip, either in precise form or vague form.

Output

Output one line for each test case in the input. Output “Reliable” if It is possible to arrange N defense stations satisfying all the M tips, otherwise output “Unreliable”.

Sample Input

3 4
P 1 2 1
P 2 3 1
V 1 3
P 1 3 1
5 5
V 1 2
V 2 3
V 3 4
V 4 5
V 3 5

Sample Output

Unreliable
Reliable

Source

[Submit]   [Go Back]   [Status]   [Discuss]

Home Page   Go Back  To top

这道题给出了两个约束条件, V是常规的, P是固定的差值, 对于固定的我们只要建两条边即可, 就比如 a-b >= x, a-b <= x, 相当于就把差值控的死死的, 就是固定值x, 这是一个小技巧.  这道题问你有没有解就是问你建出来的图有没有负环, 因为有负环就没有最短路(有最短路同时代表着方程组有解). 如果你列的方程式是跟我反过来的, 即两边都乘-1的话, 那就是求最长路, 判正环.

#include<stdio.h>
#include<queue>
#include<cstring>
#define clear(a) memset(a, 0, sizeof(a))
#define fufil(a) memset(a, 0x3f, sizeof(a))
using namespace std;
deque<int> q;
const int maxn = 1005;
bool vis[maxn];
char ss[2];
int dis[maxn], h[maxn], cnt[maxn], num, S, n, m;
struct edge{int nxt, v, w;}e[maxn * 200];
inline void add(int u, int v, int w){
	e[++num].v = v, e[num].w = w, e[num].nxt = h[u], h[u] = num;
}
inline bool spfa(){
	fufil(dis), clear(cnt);
	q.push_front(S), dis[S] = 0, vis[S] = true;
	while(!q.empty()){
		int u = q.front();
		q.pop_front(), vis[u] = false;
		for(int i = h[u]; i; i = e[i].nxt){
			int v = e[i].v;
			if(dis[v] > dis[u] + e[i].w){
				dis[v] = dis[u] + e[i].w;
				if(!vis[v]){
					if(++cnt[v] > n) return false;
					if(q.empty() || dis[v] < dis[q.front()]) q.push_front(v);
					else q.push_back(v);
					vis[v] = true;
				}
			}
		}
	}
	return true;
}
int main(){
	while(scanf("%d%d", &n, &m) != EOF){
		clear(h), num = 0;
		for(int i = 1; i <= n; ++i) add(S, i, 0);
		for(int i = 1; i <= m; ++i){
			scanf("%s", ss);
			int x, y, w;
			if(ss[0] == 'P'){
				scanf("%d%d%d", &x, &y, &w);
				add(x, y, -w), add(y, x, w);
			}
			else{
				scanf("%d%d", &x, &y);
				add(x, y, -1);
			}
		}
		if(spfa()) puts("Reliable");
		else puts("Unreliable");
	}
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值