自然语言处理笔记week3

week3课程内容

Part of speech tagging词类标注:

1.POS(Part of speech)词类:

在这里插入图片描述

词类标注的工作,就是给句子中的每个单词标注上它在这句话中正确的词性。这项工作的难点在于,一个单词往往具有多个词性。

2.两种tagging方法:

(1)基于规则的标注方法:rule-based tagging
(2)HMM(Hidden Markov Model 隐马尔科夫模型)

3.正式介绍 HMMs:

(1)任务介绍:对于一个单词序列 w 1 , w 2 . . . w n w_1,w_2...w_n w1,w2...wn,我们希望找到一组词性序列 t 1 , t 2 . . . t n t_1,t_2...t_n t1,t2...tn,使得词性序列与单词序列匹配得最好,即找到:
t 1 n = arg max ⁡ t 1 , t 2 . . . t n P ( t 1 , t 2 . . . t n ∣ w 1 , w 2 . . . w n ) t^n_1=\argmax_{t_1,t_2...t_n}P(t_1,t_2...t_n|w_1,w_2...w_n) t1n=t1,t2...tnargmaxP(t1,t2...tnw1,w2...wn)
利用bayes公式 P ( x ∣ y ) = P ( y ∣ x ) P ( x ) P ( y ) P(x|y)=\frac{P(y|x)P(x)}{P(y)} P(xy)=P(y)P(yx)P(x),上式变为:
t 1 n = arg max ⁡ t 1 , t 2 . . . t n P ( w 1 , w 2 . . . w n ∣ t 1 , t 2 . . . t n ) P ( t 1 , t 2 . . . t n ) P ( w 1 , w 2 . . . w n ) ≈ arg max ⁡ t 1 , t 2 . . . t n P ( w 1 , w 2 . . . w n ∣ t 1 , t 2 . . . t n ) P ( t 1 , t 2 . . . t n ) t^n_1=\argmax_{t_1,t_2...t_n}\frac{P(w_1,w_2...w_n|t_1,t_2...t_n)P(t_1,t_2...t_n)}{P(w_1,w_2...w_n)}\\ \approx \argmax_{t_1,t_2...t_n}P(w_1,w_2...w_n|t_1,t_2...t_n)P(t_1,t_2...t_n) t1n=t1,t2...tnargmaxP(w1,w2...wn)P(w1,w2...wnt1,t2...tn)P(t1,t2...tn)t1,t2...tnargmaxP(w1,w2...wnt1,t2...tn)P(t1,t2...tn)
这里, P ( w 1 , w 2 . . . w n ∣ t 1 , t 2 . . . t n ) P(w_1,w_2...w_n|t_1,t_2...t_n) P(w1,w2...wnt1,t2...tn)叫做似然度(likelihood), P ( t 1 , t 2 . . . t n ) P(t_1,t_2...t_n) P(t1,t2...tn)叫做先验概率(prior)
在这里插入图片描述

likelihood和prior均可以通过训练集统计得到。
(2)Markov chain与HMM:
马尔科夫链是一阶可观测马尔科夫模型,我们知道状态集与各状态之间的转移概率,我们观测到的就是状态本身。
而隐式马尔科夫模型,我们无法观测到状态本身,只能观测到与状态有关系的东西。为便于理解,有下面的例子:
在这里插入图片描述

简言之,就是我们如何通过多年前一个孩子吃冰淇淋数目的记录,推测当时的天气变化。这个例子中,我们无法直接观察天气,但可以间接推测,这就是“隐”的含义。
HMM定义如下:
在这里插入图片描述

简单表示,就是: H M M = Π , A , B + Q + O HMM=\Pi ,A,B+Q+O HMM=Π,A,B+Q+O,注:B是状态确定时,观测为O的概率。另外,记 Λ = { Π , A , B } \Lambda=\{\Pi,A,B \} Λ={Π,A,B}
(3)HMMs训练存在的问题:参考网站

  • 识别问题(概率计算算法):给定 Λ \Lambda Λ,如何计算模型产生观测序列 O 1 , O 2 . . . O n O_1,O_2...O_n O1,O2...On的概率 P ( O ∣ Λ ) P(O|\Lambda) P(O∣Λ) ? 也就是如何评价模型与观测序列的匹配度。解决:前向算法
  • 学习问题(学习算法):如何根据已知的观测序列,训练出最匹配的模型参数 Λ \Lambda Λ。解决:EM算法
  • 解码问题(预测算法):如何根据训练好的模型,推出隐状态。解决:viterbi算法

–> 自然语言处理笔记week4

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值