测试地址:数的划分
做法:我们分析将整数i划分成j份的情况,发现分为两种情况:1.最小的一份是1,这种情况的方案数等于将整数i-1划分成j-1份的情况(相当于在所有方案前面加上一个1)。2.最小的一份不是1,这种情况的方案数等于将整数i-j划分成j份的情况(相当于在所有方案的每一份上都加上一个1)。设f[i][j]为整数i划分成j份的情况,易得状态转移方程:f[i][j]=f[i-1][j-1]+f[i-j][j]。
以下是本人代码:
#include <cstdio>
using namespace std;
int n,k,f[210][8]={0};
int main()
{
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++)
f[i][1]=1;
for(int i=2;i<=n;i++)
for(int j=2;j<=k&&j<=i;j++)
f[i][j]=f[i-1][j-1]+f[i-j][j];
printf("%d",f[n][k]);
return 0;
}