【HDU2865】Birthday Toy-Burnside引理+数论+DP矩阵优化

测试地址:Birthday Toy
题目大意:要给一种轮状玩具着色,这种轮状玩具外围是环形的,由 N(109) 颗小珠子组成,中间有一颗大珠子,外围环上相邻的珠子之间有连边,大珠子和所有小珠子之间都有连边。每一颗珠子都要着一个颜色,颜色共有 K(109) 种,有连边的两颗珠子不能是同一种颜色,旋转后相同的着色方案视为相同,问本质不同的着色方案数有多少,对 109+7 取模。
做法:这一道题需要使用:Burnside引理,欧拉函数,DP+矩阵快速幂优化,乘法逆元。
这一道题大体和POJ2888类似,都限定了相邻珠子的颜色,不同的是这一题限制变得更有规律了,但是 K 也变得很大,我们就从POJ2888得出的结论开始推。POJ2888题解请看这里
首先大珠子可以涂任意一种颜色,然后小珠子只能涂剩下的颜色了,为了方便,接下来我们令K=K1
在这一题里,矩阵 M 除了对角线元素为 0 外,其他元素均为1,我们能不能利用这个特殊性质求出 Md 的对角线元素呢?
我们可以找到一个规律: Mdij=kjMd1ik ,用这种方法写出几个矩阵,根据观察可以推断(或者用数学归纳法证明,我懒得证了), Md 的对角线元素都相等,非对角线元素也相等,且对角线元素与非对角线元素之间的差总为 1 1,而且这两个差交替出现。所以我们设 Md 的对角线元素为 m(d) ,可以得到递推式:
m(2i)=(K1)2×m(2(i1))(K1)(K2)
m(2i+1)=(K1)×(m(2i)1)
其中 i 为正整数,m(0)=1
其实好像还有更简单的递推式,但是我使用了更简单粗暴的分析方法,大家就将就着看吧……
那么很显然这个递推式就可以使用矩阵加速优化了,其余的关于利用欧拉函数优化计算Burnside公式的时间复杂度等内容和POJ2888相同,上文已经给了链接,这里就不赘述了。注意负数取模。
犯二的地方: N 可能是一个完全平方数!!!如果是使用枚举d,然后分别计算 d N/d的答案这种方法,不加判断的话,就意味着如果枚举到了 N N 的答案会被计算两次,我写POJ2888时没注意这个居然过了,可能是数据比较水吧(现在已经修改)。
以下是本人代码:

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define ll long long
#define mod 1000000007
using namespace std;
ll N,K,ans;
struct matrix {ll s[2][2];} M[40];

void exgcd(ll a,ll b,ll &x,ll &y)
{
  ll x0=1,x1=0,y0=0,y1=1;
  while(b)
  {
    ll tmp,q;
    q=a/b;
    tmp=x0,x0=x1,x1=tmp-q*x1;
    tmp=y0,y0=y1,y1=tmp-q*y1;
    tmp=a,a=b,b=tmp%b;
  }
  x=x0,y=y0;
}

matrix mult(matrix A,matrix B)
{
  matrix S;
  memset(S.s,0,sizeof(S.s));
  for(int i=0;i<=1;i++)
    for(int j=0;j<=1;j++)
      for(int k=0;k<=1;k++)
        S.s[i][j]=(S.s[i][j]+A.s[i][k]*B.s[k][j])%mod;
  return S;
}

matrix power(ll x)
{
  matrix S;
  S.s[0][0]=1,S.s[0][1]=0;
  S.s[1][0]=0,S.s[1][1]=1;
  int i=0;
  while(x)
  {
    if (x&1) S=mult(S,M[i]);
    i++;x>>=1;
  }
  return S;
}

ll phi(ll x)
{
  ll s=x;
  for(ll i=2;i*i<=x;i++)
    if (!(x%i))
    {
      s=s/i*(i-1);
      while(!(x%i)) x/=i;
    }
  if (x>1) s=s/x*(x-1);
  return s;
}

void solve(ll x)
{
  matrix S=power(x/2);
  ll tmp=S.s[0][0]+S.s[0][1];
  if (x%2) tmp=((K-1)*((tmp-1)%mod))%mod;
  tmp=(K*tmp)%mod;
  tmp=(phi(N/x)*tmp)%mod;
  ans=(ans+tmp)%mod;
}

int main()
{
  while(scanf("%lld%lld",&N,&K)!=EOF)
  {
    ans=0;

    K--;
    M[0].s[0][0]=((K-1)*(K-1))%mod;
    M[0].s[0][1]=((-(K-1)*(K-2))%mod+mod)%mod;
    M[0].s[1][0]=0;
    M[0].s[1][1]=1;

    for(int i=1;i<=35;i++) M[i]=mult(M[i-1],M[i-1]);
    for(ll i=1;i*i<=N;i++)
      if (!(N%i))
      {
        solve(i);
        if (i!=N/i) solve(N/i);
      }

    ll x0,y0;
    exgcd(N,mod,x0,y0);
    x0=(x0%mod+mod)%mod;
    printf("%lld\n",(((x0*ans)%mod)*(K+1))%mod);
  }

  return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值