【BashuOJ2276】月饼盒-矩阵型DP

测试地址:月饼盒
题目大意:给定一个 N×M 的仅含非负整数的矩阵,要求求出一个不含0的矩阵,使得矩阵内元素之和最大。
做法:这是一道矩阵型DP的题目。
要做这一题,首先需要知道极大子矩阵的概念:
极大子矩阵:如果一个子矩阵不被另一个不含障碍点(本题中为0)的子矩阵包含,那么这个子矩阵是一个极大子矩阵。
这里有一个结论:元素和最大的子矩阵是一个极大子矩阵。这很容易证明,使用反证法,如果它不是一个极大子矩阵,那么一定存在包含它的更大的子矩阵,由于元素都非负,所以新的矩阵元素和一定比它大,和假设矛盾,所以结论成立。
那么我们只需要求出所有的极大子矩阵,然后求它们中元素之和的最大值即可。怎么求呢?这里利用一种叫摆线法的方法。对于每一个点,向上作一条线段,直到碰到边界或障碍点,然后将这条线段左右摇摆,不撞到障碍点或边界能达到的最大的区域就是我们所求的矩阵。显然极大子矩阵就包含在我们求的这些矩阵中。那么我们要求出一些参数才能获知具体的子矩阵。我们设 up(i,j) 为从点 (i,j) 向上作的线段长, lft(i,j) 为这条线段向左摆动的最大长度, rht(i,j) 为这条线段向右摆动的最大长度。 up(i,j) 显然可以从上往下 O(MN) 地处理出来,关键是如何求 lft(i,j) rht(i,j) 。这时,我们再设两个数组 l,r ,其中 l(i,j) (i,j) 向左摆动的最大长度, r(i,j) (i,j) 向右摆动的最大长度,这两个数组都可以从左往右或从右往左 O(MN) 地处理出来。然后再从上往下推 lft(i,j) rht(i,j) ,有:
lft(i,j)=min(lft(i1,j),l(i,j))
rht(i,j)=min(rht(i1,j),r(i,j))
这样就可以 O(MN) 求出这两个数组了。求得这些参数后,每个点就唯一确定一个子矩阵了,而且我们知道这个子矩阵左上角和右下角的坐标,那么我们只需要在所有操作之前先 O(MN) 处理出二维前缀和,那么就可以 O(1) 求出子矩阵内的元素和了。这些矩阵元素和的最大值就是所求的答案。
以下是本人代码:

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
int n,m,a[1010][1010],sum[1010][1010]={0},ans;
int up[1010][1010]={0},l[1010][1010]={0},r[1010][1010]={0},lft[1010][1010]={0},rht[1010][1010]={0};

int rec(int a,int b,int c,int d)
{
    return sum[c][d]-sum[a-1][d]-sum[c][b-1]+sum[a-1][b-1];
}

int main()
{
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++)
    {
        int s=0;
        for(int j=1;j<=m;j++)
        {
            scanf("%d",&a[i][j]);
            s+=a[i][j];
            sum[i][j]=sum[i-1][j]+s;
        }
    }

    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
        {
            if (!a[i][j]) up[i][j]=0;
            else up[i][j]=up[i-1][j]+1;
        }
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
        {
            if (!a[i][j]) l[i][j]=0;
            else l[i][j]=l[i][j-1]+1;
        }
    for(int i=1;i<=n;i++)
        for(int j=m;j>=1;j--)
        {
            if (!a[i][j]) r[i][j]=0;
            else r[i][j]=r[i][j+1]+1;
        }
    ans=0;
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
            if (a[i][j])
            {
                if (up[i][j]>1)
                {
                    lft[i][j]=min(lft[i-1][j],l[i][j]);
                    rht[i][j]=min(rht[i-1][j],r[i][j]);
                }
                else lft[i][j]=l[i][j],rht[i][j]=r[i][j];
                ans=max(ans,rec(i-up[i][j]+1,j-lft[i][j]+1,i,j+rht[i][j]-1));
            }
    printf("%d",ans);

    return 0;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值