【BZOJ3744】Gty的妹子序列-序列分块+树状数组

测试地址:Gty的妹子序列
做法:本题需要用到序列分块+树状数组。
求区间逆序对数,我们知道可以用莫队算法+树状数组来做离线做法,但是这题强制在线,我们应该怎么办呢?
还是考虑分块,将序列分成 n n 块,每块有 n n 个元素。我们需要尽可能快的处理出尽可能多的区间内的逆序对数,这样可以有助于我们进行下一步操作。令 num(l,r) n u m ( l , r ) 为区间 [l,r] [ l , r ] 的答案,我们可以枚举每个块,对每个块的左端点 i i ,处理出所有num(i,j)(j>i),用树状数组处理的话,对于每个块都是 O(nlogn) O ( n log ⁡ n ) 的,那么总时间复杂度就是 O(nnlogn) O ( n n log ⁡ n ) 。同样地,对每个块的右端点 i i ,处理出所有num(j,i)(j<i)
有了这些东西,我们应该怎么继续往下做呢?对于一个询问 [l,r] [ l , r ] ,找到 l,r l , r 所在的块,假定它们分别为 c,d c , d (当然有可能 c=d c = d )。令 lft(i),rht(i) l f t ( i ) , r h t ( i ) 为第 i i 块的左右端点,我们计算num(lft(c),r)+num(l,rht(d))num(lft(c),rht(d)),注意到这个结果等于 num(l,r) n u m ( l , r ) 再减去一端在 [lft(c),l1] [ l f t ( c ) , l − 1 ] ,一端在 [r+1,rht(d)] [ r + 1 , r h t ( d ) ] 中的逆序对数。因为这两个区间的长度都不超过 n n ,那么只需要暴力 O(nlogn) O ( n log ⁡ n ) 处理出多减去的值,然后加回去即可。
那么我们就解决了这一道题,总时间复杂度为 O(nnlogn) O ( n n log ⁡ n )
以下是本人代码:

#include <bits/stdc++.h>
using namespace std;
int n,m,blocksiz,block[50010],blockhead[230],blocktail[230],maxb,tot,a[50010];
int lft[230][50010],rht[230][50010],sum[50010]={0};
struct forsort
{
    int id,val;
}f[50010];

bool cmp(forsort a,forsort b)
{
    return a.val<b.val;
}

int lowbit(int x)
{
    return x&(-x);
}

void BITadd(int x,int c)
{
    for(int i=x;i<=n;i+=lowbit(i))
        sum[i]+=c;
}

int BITsum(int x)
{
    int s=0;
    for(int i=x;i;i-=lowbit(i))
        s+=sum[i];
    return s;
}

int main()
{
    scanf("%d",&n);
    blocksiz=(int)sqrt(n);
    for(int i=1;i<=n;i++)
    {
        block[i]=(i-1)/blocksiz;
        if (i==1||block[i]!=block[i-1])
        {
            blockhead[block[i]]=i;
            if (i>1) blocktail[block[i-1]]=i-1;
        }
        scanf("%d",&f[i].val);
        f[i].id=i;
    }
    maxb=(n-1)/blocksiz;
    blocktail[maxb]=n;

    sort(f+1,f+n+1,cmp);
    tot=0;
    for(int i=1;i<=n;i++)
    {
        if (i==1||f[i].val!=f[i-1].val) tot++;
        a[f[i].id]=tot;
    }

    for(int i=0;i<=maxb;i++)
    {
        memset(sum,0,sizeof(sum));
        lft[i][blockhead[i]]=0;
        BITadd(a[blockhead[i]],1);
        for(int j=blockhead[i]+1;j<=n;j++)
        {
            lft[i][j]=lft[i][j-1]+BITsum(n)-BITsum(a[j]);
            BITadd(a[j],1);
        }
        memset(sum,0,sizeof(sum));
        rht[i][blocktail[i]]=0;
        BITadd(a[blocktail[i]],1);
        for(int j=blocktail[i]-1;j;j--)
        {
            rht[i][j]=rht[i][j+1]+BITsum(a[j]-1);
            BITadd(a[j],1);
        }
    }

    scanf("%d",&m);
    int lastans=0;
    memset(sum,0,sizeof(sum));
    for(int i=1;i<=m;i++)
    {
        int l,r,ans;
        scanf("%d%d",&l,&r);
        l^=lastans,r^=lastans;
        ans=lft[block[l]][r]+rht[block[r]][l]-lft[block[l]][blocktail[block[r]]];
        for(int j=r+1;j<=blocktail[block[r]];j++)
            BITadd(a[j],1);
        for(int j=blockhead[block[l]];j<l;j++)
            ans+=BITsum(a[j]-1);
        for(int j=r+1;j<=blocktail[block[r]];j++)
            BITadd(a[j],-1);
        printf("%d\n",ans);
        lastans=ans;
    }

    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值